

SIXTH FRAMEWORK PROGRAMME Sustainable Energy Systems

NETWORK OF EXCELLENCE

Contract No SES6-CT-2004-502630 Safety of Hydrogen as an Energy Carrier

Updated IEF documents

Deliverable 96 (WP 2)

Lead Participant: Partners Contributing: FZJ (E.-A. Reinecke) BAM, CEA, ET, Fh-ICT, FZK, GexCon, HSE/HSL, INASMET, INERIS, JRC, KI, TNO, UNIPI, WUT

Dissemination Level: PU

Document Version:1.0Date of submission:09.03.2008Due date of delivery:31.10.2007

Co-funded by the European Commission within the Sixth Framework Programme (2002-2006)

SUMMARY

Integration of Experimental Facilities (IEF) is one of the integrating activities within the network HySafe. The objective of this activity is to enable the network to jointly perform high level experimental research needed for investigation of relevant phenomena, for testing devices and concepts as well as for validation of numerical models.

The IEF documents developed in the funding period of HySafe include compilations of the descriptions of experimental facilities (D09) and instrumentation (D35), a classification of the facilities (D45), the on-line presentation of facilities on the HySafe website, and the working document on best practice (D70).

The present deliverable D96 includes an update of the IEF documents D09, D35, and D45. With regard to the previous version of these documents it is enhanced to a total of 109 HySafe facilities operated by 15 partners.

This documents has to be continuously enhanced and extended in order to account for progress in knowledge and technical possibilities. It will be transformed into internal documents and serve as a starting point for future reference in the activities of the HySafe follow-up organisation.

Updated IEF documents

CONTENTS

1	Introduction	7
2	Descriptions of experimental facilities	7
3	Categorisation of facilities	11
4	Descriptions of instrumentations	24
5	Conclusions	24
Anne	ex I – Compilation of descriptions of experimental facilities	27
Anne	ex II – Compilation of descriptions of devices and instrumentation	275

1 Introduction

Integration of Experimental Facilities (IEF) is one of the integrating activities within the network HySafe aiming at the integration of experience and knowledge on hydrogen safety in Europe as well as at the integration and harmonisation of the fragmented research base. The objective of this activity is to enable the network to jointly perform high level experimental research by

- supporting partners' development of excellence
- broadening the fields of experience
- enhancing the communication and knowledge base

Research facilities are needed for investigation of relevant phenomena, for testing devices and concepts as well as for validation of numerical models. IEF provides basic support for jointly performed experimental work within HySafe. Hence, IEF represents a long lasting effort for reaching sustainable integration of the partners' experimental research capacities.

The main task of IEF during the first 18 months period of the network was to prepare the basis for future integration of the experimental possibilities of the partners. As a first step, the partners have prepared detailed descriptions of the facilities available for carrying out specific tests and experiments related to the thematic structure of the network. The unified format as described in Deliverable D05 has been used. This compilation was the first step to a better knowledge of each other.

In order to identify the best expertise of the partners, the work in the second period of HySafe focused on the categorisation of the experimental facilities and on the compilation of instrumentation. A website presentation of the facilities was set-up. In order to ensure a common quality standard, a series of workshops was started covering topics related to measurement techniques and experimental work.

In the third period liquid hydrogen applications was identified as major gap in knowledge among the partners. ET EnergieTechnologie joined the work package as active supporter to fill this gap. The well received series of semi-annual IEF workshops was continued. A Wiki page was set up in order to provide a communication platform. A working document including the joint experimental knowledge of all partners with regard to experiments and instrumentation was set up as well.

Activities in the present fourth period continue the successful integration work by including the new partners ET and KI in the set of IEF documents. The series of IEF workshops continues as well. The present deliverable gives an update of the IEF documents providing a detailed insight into the experimental capabilities of the HySafe consortium.

2 Description of experimental facilities

In the first period of the HySafe project a compilation of the experimental facilities (D09) was provided to serve as a starting point for further activities. The present updated set contains the enhanced descriptions of 109 facilities taking into account information on particular features and measurement capabilities in order to identify specific expertise as well as aspects concerning possible integration activities. Table 1 gives on the next pages an overview of the 109 HySafe facilities demonstrating the great variety and the wide range of the experimental possibilities of the partners.

BAM-1	Fire Testing Rig	open propane gas fire	test of the behaviour of pressurized or protective containers under fire load
BAM-2	Open Air Test Site Horstwalde	open air test site	fire, drop, impact and other tests for flammable, pressurized or otherwise
BAM-3	Hydraulic Cycling Equipment	-	investigation of pressure receptacles under pulsating pressure load
BAM-4	Facility for testing and calibration of gas sensors	test gas mixture system and test chamber	testing and calibration of gas sensors
BAM-5	Tribometers for oscill. (PT1) or sliding friction (CT2, CT3)	PT1, CT2, CT3	friction and wear at elevated press. or at cryog. temperatures / in cryog. liquids
BAM-6	Facility for testing and calibration of gas sensors	test gas mixture system and test chamber	testing and calibration of gas sensors
CEA-1	MISTRA	cylindrical steel vessel	H2(He) release and distribution in confined geometry
CEA-2	GAMEL (under construction, available in 2005)	cubic polycarbonate vessel	detailed studies of H2 (simulated by He) rel. and distr. in a 3D conf. geometry
ET-1	Liquid hydrogen vacuum insulation rupture rig	LH2-car tank	behaviour of LH2-car tank under spont. rupture of vacuum insulation
ET-2	Liquid hydrogen tank test equipment	Tank test installation	experimental study of tank and component failures
ET-3	Liquid hydrogen test rig for material tests	Vessel	behaviour of liquid hydrogen structures under mechanical and thermal loads
ET-4	High pressure hydrogen tank and component test equipment	Test chambers (various)	tank and component failures, Extreme temperature tests, Fast fill and drain
ICT-1	High pressure H2 compressor	Remote controlled system based on Maximator DLE 75	material, component and system tests,
ICT-2	Heatable high pressure vessel	vessel	decomposition and ignition induced by temperature increase and external ign.
ICT-3	Device for flame jet ignition	cylindrical vessel with vent opening	flame jet ignition
ICT-4	High pressure vessel with windows	1 litre high pressure vessel with windows	explosions with init. press. up to 3 MPa and time resolved spectroscopic meas.
ICT-5	45 m ³ closed detonation room		detonation experiments with explosive gases, liquids and solids
ICT-6	splinter protected Test box / area		high pressure, free jet, burning and medium size explosion experiments
ICT-7	Test stand	closed test stand with blow- out option	multipurpose tests with energetic materials
ICT-8	Testing area	open-air	explosions, tank testing, H2 release,
ICT-9	6 MPa Autoclave		
FZJ-1	REKO-1	flow reactor	H2 recombination under forced flow conditions
FZJ-2	REKO-2	pressure vessel	H2 recombination
FZJ-3	REKO-3	flow reactor	H2 recombination under forced flow conditions
FZJ-4	REKO-4 (under construction)	pressure vessel	H2 recombination under natural flow conditions
FZK-1	A1 Vessel	cylindrical vessel	turbulent combustion and detonations, integrity of mechanical structures
FZK-2	A3 Vessel	cylindrical vessel	turbulent combustion and detonations, vented explosions, H2 distribution
FZK-3	A6 Vessel	cylindrical vessel	turbulent combustion and detonations, integrity of mechanical structures
FZK-4	12 m detonation tube (DT)	cylindrical tube	turbulent combustion, DDT and steady state detonations, chemical kinetic
FZK-5	Flow Test Chamber (TC)	rectangular chamber	vented combustion and detonations; H2 distribution, testing of ventilation syst.
FZK-6	Partially Vented Explosion Tube (PET)	cylindrical tube with variable opening	vented explosions, turb. flame propag., flame acceleration and DDT
FZK-7	A8 Vessel	cylindrical vessel	turbulent combustion and detonations, vented explosions, H2 distribution
FZK-8	Explosion bomb	spherical vessel	flammability limits, minimum ignition energy, laminar flame velocity, chemical
FZK-9	HyJet	horizontal/vertical hydrogen jet	hydrogen release from pressurized vessel, hydrogen concentrations and
GC-1	168 m ³ open geometry with internal obstructions	explosion vessel	explosions in open, congested geometries
GC-2	1:3.2 scale offshore module	explosion vessel	vented explosions in realistic geometries
GC-3	Connected vessels	explosion vessel	explosions in vented vessel
L			

Table 1: Experimental facilities of the HySafe partners

	Tubic I (ciu.). Experin		
GC-4	6m channel	explosion vessel	vented explosions in idealised geometries
GC-5	50m ³ tube	explosion vessel	dispersion/explosions in closed/vented vessel (tunnels)
GC-6	1.2 m ³ closed vessel	explosion vessel	explosions in closed vessel
GC-7	216 litre dispersion vessel	dispersion/explosion vessel	gas dispersion/homogeneity
GC-8	20 litre spray vessel	explosion vessel	explosions in closed vessel
GC-9	1.4 m channel	explosion vessel	vented explosions in idealised geometries
GC-10	3D corner	explosion vessel	vented explosions in complex idealised geometries
HSL-1	Ventilated dispersion and explosion facility	modular vented enclosure with integrated ventilation	dispersion/ignition/explosion from high pressure releases into ventilation flow
HSL-2	Gas dispersion facility	gas dispersion area	dispersion of flashiong liquid or gas (LPG, H2)
HSL-3	Under water gas release and explosion facility	explosion vessel	Ulage space gas explosions
HSL-4	Jet fire facility	LPG vapour jet fire facility	PFP material and components testing, Jet-Fire Resistance Test (JFRT)
HSL-5	High pressure hydrogen facility	gas supply and pipe work to enable pressurised releases	ignited and unignited jet releases
HSL-6	366m gallery/tunnel	concrete test enclosure/tunnel	combustion and ventilation controlled overpressures fragmentation
HSL-7	Frictional ignition apparatus	ignition test facility with vented explosion vessel	frictional rubbing events in flammable atmospheres, spark and hot surface
HSL-8	75 mm gas gun	impact test facility	dynamic impact on components/tanks etc.
HSL-9	190 mm gas gun	impact test facility	dynamic impact on components/tanks etc.
HSL-10	Impact test track	impact test facility	dynamic impact on components/tanks etc.
HSL-11	Drop tower 3.3 m	impact test facility	dynamic impact on components/tanks etc.
HSL-12	Drop tower 25 m	impact test facility	dynamic impact on components/tanks etc.
INA-1	SSRT equipment	autoclave+ tensile testing	effect of hydrogen on the behaviour of materials - hydrogen embrittlement
INA-2	NACE TM 01-77 testing	corrosion cells + load	effect of hydrogen on the behaviour of
INA-3	equipment Fatigue testing equipment	applying rings Servohydraulic universal	materials - hydrogen embrittlement effect of hydrogen on the behaviour of
111/4-3	r augue testing equipment	tensile testing machine	materials in fatigue – corrosion
INA-4	LECO TCH 600	-	chemical analysis of hydrogen in metals
INA-5	SHS reactor	-	metallic hydride production by SHS
INA-6	PEMFC Testing Equipment	Fuelcon C050	Evaluation of PEMFC components behaviour
INA-7	SOFC Testing Equipment	-	Evaluation of SOFC components behaviour
INE-1	The "Basket"	large scale test area	rupturing of confinements and investigation of fracturing and missiles
INE-2	ISO-1 m ³ chamber, Dust-gas	vented or closed vessel	Kst and Kg meas., turbulence/mixing,
INE-3	explosion room (DG1m3) 10 m ³ chamber, Dust-gas	vented vessel	flame propagation, safety device tests turbulence/mixing, flame propagation,
INE-4	explosion room (DG10m3) INERIS-100 m ³ chamber, Dust-	vented vessel	safety device tests turbulence/mixing, flame propagation,
INE-5	gas explosion room (DG100m3) Flame Acceleration Pad (FAP)	pipes	safety device tests flame propagation in tubes and pipes,
INE-6	Flexible Ignition Facilities (FIF)	small vessel with various	vents and flame arrester testing characteristics of "practical" ignition
INE-7	High pressure-high temperature-2	igniters closed vessel	sources, fundamentals of flame initiation flammable limits, auto-ignition delay,
INE-8	m ³ sphere (HPT2m3) High presshigh temp. 500ml	closed vessel	explos. param. (high press. and temp.) max. press. meas. at very high press.
INE-9	expl. chamber (HPT500ml) Open Fire Area (OFA)	large scale test area	and temperatures, ignition behaviour ignition and fire of gaseous jets and
			liquid pools
INE-10	Unconfined Cloud Area (UCA)	large scale test area	flammable gases and liquids releases from high press. tanks, unconfined expl.
INE-11	Sensors and Safety Devices Laboratory	environmental testing for explosive/toxic gases	sensors performance testing

Table 1 (ctd.): Experimental facilities of the HySafe partners

INE-12	leak detection unit (LDU)	medium scale	measurement of leakage rate from pressurised components (up to 1000
JRC-1	Hydrogen solid-state storage assessment laboratory (SolTeF)	Volumetric, gravimetric and spectrometric sorption	H2 capacity meas., PCI, reaction thermodynamic and kinetics prop.
JRC-2	Sensor Testing Facility (SenTeF)	environmental sensor test bench	sensors performance testing
JRC-3	High-pressure hydrogen tank facility (GasTeF)	N2-inertised room with pressure vessels	HP cycling+permeation meas. on compr H2/CH4 storage systems for vehicles
KI-1	Spray	Sprayer for liquid fuels	Studies on critical energy initiation of
KI-2	Sphere	Semi-sphere for gaseous	detonation in motor fuel - air clouds, Studies on blast wave and thermal
KI-3	Koper	fuel air mixtures vented explosion chamber	radiation parameters of gaseous studies on turbulent combustion and
-	•	with semi-cylindrical volume explosion chamber	detonations, vented explosions
KI-4	Vortex	1	studies on flame - vortex interaction, turbulent flame, ignition - extinction
KI-5	Minirut	system of channels	studies on turbulent combustions detonations and scaling effect
KI-6	Channel	Rectangular channel	studies on turbulent combustions
KI-7	Chamber	Rectangular channel joined	detonations and scaling effect studies on turbulent combustions and
KI-8	Driver	with cylindrical chamber cylindrical tube	flame vortex - shock interaction studies on turbulent combustions and
KI-9	Torpedo	cylindrical tube	detonations, scaling and venting effects studies on turbulent combustions and
-		5	detonations, scaling and venting effects
KI-10	Venting	system of cylindrical tubes	studies on turbulent combustions and detonations, scaling and venting effects
KI-11	RUT 2200	system of channels and chambers	studies on turbulent combustion and detonation
KI-12	Globus	spherical bomb	studies on laminar combustion and
KI-13	High Pressure Jet Facility (HPJF)	open hydrogen gas fire	turbulent deflagration combustion of high pressure hydrogen
TNO-1	1 litre vessel	closed bomb	jet in specific environment measure explosion limits and ignition
			temperatures and energies
TNO-2	20 litre vessel	closed bomb	measure explosion limits and ignition temperatures and energies
TNO-3	500 litre vessel	closed bomb	measure explosion limits and ignition temperatures and energies
TNO-4	1 m ³ vessels	vessel (closed bomb)	closed bomb experiments with high
TNO-5	5 m³ vessel	vessel (closed bomb)	initial press. and linked vessels test of equipment and protective
TNO-6	GEC	cubic shaped vessel	systems for use in explosive atmosph. test constructions that can reduce or
			protect against explosion overpressures
TNO-7	IBBC Bunker	reinforced concrete bunker	vented gas explosions
TNO-8	FAST	open air gas explosion facility	gas explosions in open air; flame propagation and blast wave experiments
TNO-9	GFEF	flow reactor	integrated studies on explosion control
TNO-10	Large scale blast simulator	long tube	and process optimisation blast wave response in atmosphere
TNO-11	Laboratory for ballistic research	internal firing ranges and a	kinetic energy projectiles can be fired at
TNO-12	(LBO) Test Facility 3 (TF3)	massive target bunker H2/O2 igniter test facility	targets testing small rocket motors, igniters,
TNO-13	Large indoor rocket test stand	rocket test facility	combustors etc. requiring H2 or O2 testing large rocket motors etc. and
UP-1	CVE	vented room	activities like combustion research etc. vented explosions
UP-2	НРВТ		
		pipeline	hydrogen release and jet-fire
WUT-1	WUT Detonation Channel	square cross-section channel	H2 fast deflagrations, detonations, DDT, explosion initiation, mitigation of det.
WUT-2	WUT Detonation Tube	circular cross-section tube	H2 fast deflagrations, detonations, DDT, explosion initiation, mitigation of det.
		near spherical chamber	studies on hydrogen ignition, flame

Table 1 (ctd.): Experimental facilities of the HySafe partners

In order to provide a unified overview of the experimental possibilities of the partners, the format for the descriptions of the experimental facilities had been defined as documented in deliverable D05. The descriptions are divided into the sections

- Overview,
- Technical details,
- Experiments Equipment,
- Information for the preparation of integration.

The full compilation of facilities descriptions is given in Annex I. An on-line version of the facility descriptions is available via the HySafe website.

3 Categorisation of facilities

The categorisation of the facilities has been performed as further development of D09. The main objective is to facilitate the overview of the experimental possibilities of the HySafe partners in order to

- identify specific expertise,
- map research needs with research possibilities in order to identify gaps,
- enhance the presentation of the facilities.

IEF provides the facilities the network needs for research. Consequently, the phenomena and parameters related to accidental events and possible consequences if an ignition of a flammable gas mixture occurs introduced in the PIRT have been used as a basis. The *main*

Main categories	Sub-categories 'geometry'	
Gaseous release	 confined - lab/small scale confined - larger scales vented - larger scales vented - larger scales 	• open air
Dispersion	 confined - lab/small scale confined - larger scales vented - larger scales 	• open air
Ignition	confined - lab/small scale confined - larger scales	• open air
Combustion/Explosion	 confined - lab/small scale confined - larger scales vented - larger scales 	open air · detonation tubes
Liquid release	 confined - lab/small scale confined - larger scales vented - larger scales 	• open air
Expl. of liquid storage	 confined - lab/small scale confined - larger scales 	open air
Mitigation		
Equipmt./device testing		

Tab. 2: Sub-categories 'geometry'

categories characterising the main field of application of a facility are:

- Gaseous release,
- Dispersion,
- Ignition,
- Combustion/explosion,
- Liquid release,
- Explosion of liquid storage,
- Mitigation,
- Equipment and device testing.

'Equipment and device testing' was not included in the PIRT table but represents an important type of experimental research activity within HySafe.

Main categories	Sub-categories 'phenomena'
Gaseous release	 permeation full bore rupture (pipe), full vessel rupture subsonic release turbulent flow in pipes, transport of H2 choked flow (sonic) release
Dispersion	 impinged jets buoyancy effects obstacle-generated turbulence effect of obstacles on flow patterns atmospheric conditions incl. wind heat transfer from environment natural ventilation (for partially conf. atm.) forced ventilation
Ignition	 auto-ignition (incl. effect of additives) shock ignition weak / mild ignition (incl. static electricity) [forced ignition] strong ignition [forced ignition] direct initiation of detonation jet ignition (ignition by hot jet or combustion products) radiative ignition hot surface ignition flammability limits
Combustion/Explosion	 Iaminar flame detonation cellular flame quenching (global or local) wrinkled flame standing flame (diffusion flame) jet fire flame acceleration / deceleration (due to obstacles, conc. grad.) triple flame turbulent deflagration DDT (due to flame acceleration, shock reflection, etc) detonation detonation quenching (global or local) standing flame (diffusion flame) jet fire spill fire multiphase combustion (for liq. H2) heat radiation & absorption
Liquid release	 liquid (two-phase) flow through orifice full bore liquid (pipelines), full vessel rel. formation of spill - pool spreading spill evaporation two-phase flow in liquid, incl. boiling heat transfer from ground condensation (20-90K) and evaporation (>90K) of air
Expl. of liquid storage	 heat conduction in storage material Boiling Liq. Expanding Vap. Expl. BLEVE
Mitigation	 natural ventilation forced ventilation post-accident inerting recombiners preventive ignition, igniters venting of deflagration pressurisation of zone to avoid entry of H2 shut down systems blast wave protective wall interaction
Equipmt./device testing	 performance tests: sensors, igniters, recombiners storage tests impact tests: explosion, thermal, mechanical, dynamic pressure

Tab. 3: Sub-categories 'phenomena'

In addition, two sets of sub-categories are introduced characterising the geometry and scale of the facility (*sub-categories 'geometry'*) and the phenomena addressed in the experiments (*sub-categories 'phenomena'*).

In order to avoid too much confusing and complex sub-categories when using all existing scale terms (lab, small, medium, large, full etc. scale), only two *scale terms* have been used:

- 'lab/small scale' for detailed experiments,
- 'larger scales' for integral experiments.

The following *sub-categories 'geometry'* are assigned to the different main categories in combination with relevant scale terms as given in Table 2:

- confined,
- vented,
- open air.

'Combustion/Explosion' includes detonation tubes as specific geometry. 'Mitigation' and 'Equipment/device testing' are considered to be independent of scale and hence not further subdivided at this level.

The *sub-categories 'phenomena'* given in Table 3 are applied according to the PIRT.

'Equipment and device testing' (not represented in the PIRT) includes the fields

- performance tests: sensors, igniters, recombiners,
- storage tests,
- material tests,
- impact tests: explosion, thermal, mechanical, dynamic pressure.

On the next pages, Table 4 gives the complete overview of the categorisation performed including the total of 109 HySafe facilities Figure 1 gives an illustration of the table structure.

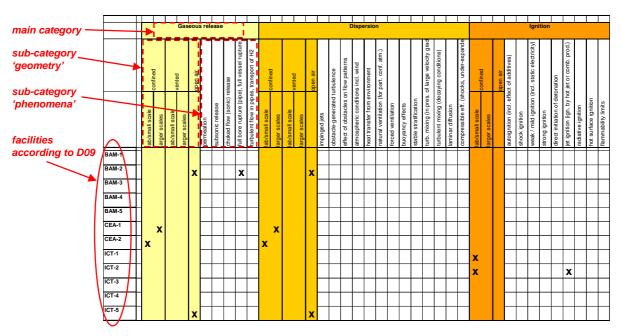


Fig. 1: Illustrative extract from the table sheet

			Ga	seous	s releas	se								Disp	ersion	I										Ign	nition	I										Com	busti	on / E	Explo	sion						
	lab/small scale	larger scales	lab/small scale vent	open	permeation subsonic release	choked flow (sonic) release	full bore rupture (pipe), full vessel ruptu turbulent flow in pipes, transport of H2	lab/small scale confined		lab/small scale vented larger scales	open air	impinged jets	obstacle-generated turbulence effect of obstacles on flow patterns	atmospheric conditions incl. wind	heat transfer from environment	natural ventilation (for partially confined	buoyancy effects	stable stratification	turbulent mixing (in presence of large v	turbulent mixing (decaying conditions) Jaminar diffusion	compressible eff. (shocks, under-expa	lah/email erala	larger scales	open air	autoignition (incl. effect of additives) shock ignition	weak / mild ignition (incl. static electric	strong ignition [forced ignition]	direct initiation of detonation	jet ignition (ignition by hot jet or combu	radiative ignition	hot surface ignition flammability limits	lab/small scale ('bomt confined	sseis	larger scales (vessels	lab/small scale open	detonation tubes	laminar flame	cellular flame	wrinked flame self furbulision flame	flame acceleration / deceleration (due	triple flame	turbulent deflagration	DDT (due to flame accelaration, shock	detonation	standing flame (diffusion flame)	jet fire	spill fire multinhase combustion (for Iid H2)	heat radiation & absorption
BAM-1			_												Ħ																																Ħ	
BAM-2				x			X				х																								Х	x 🗌												
BAM-3																																																
BAM-4 BAM-5								_																																	\perp						\square	
BAM-6								_					_		$\left \cdot \right $			_		_	_	-		-													_				+						\vdash	
CEA-1	-							-					_		$\left \cdot \right $	_		-			+	-		-								-					_				+			_	-		\vdash	+
CEA-2	x	X						x	x							_		-			-																-				+						\vdash	+
ET-1	1							^			x			x	x	x					-			x		x	x				x										+						\vdash	
ET-2								-			Î																					-									+						H	
ET-3																																1									+							
ET-4		x	х	x	x>	κx)	(x		X	X			2	x																	
ICT-1	Х	x			X	X	X	Х	x										X		X	X	x		x							хх	(X		
ICT-2								_														X	C	-	x	X	X			2	x	х									\perp						Ш	
ICT-3 ICT-4								_												_			Х	-					X			Х	۲,	Х			_				+		X			X	\square	
ICT-4	-							_					_				_			_		X	-	-		-	X					X					X		x	K	+				X		\vdash	X
ICT-6	-	X	Х)	(-	X	X			X	_	$\left \cdot \right $		X	X		v	+		X			_	-	X			X	X		X			-		x		+	$\left \right $	X	X			X	x x x
ICT-7		X X	х			X X		-	X X				X X X X	-	+ +		x x x	_	X X		+		X		x)	_	_	X			x x	X		x	x x		-		×)	<u> </u>	+		\square		X	. X		\
ICT-8		^	~	x)		x	-	x	x	x		x x	-			× X	-		X	+								^	-	1				^ x	,	⊢	\vdash			+		x	x			x	x
ICT-9	x				x >					~	Â				$\left \right $					^	+	×	,		x	x	x	+		x	x	x			~			+		ĸ	+		~				Ĥ	x
FZJ-1													+					+		+	+																			-	+						\square	
FZJ-2						\top												1			1																				T						\square	+
FZJ-3																																																
FZJ-4																																																

						Lic	quid	rele	ase					Ex	plosio sto	on c orag		uid				l	Mitig	atio	n					Ec	quipi	nent	and	Dev	ice	Festi	ng	
		confined (vessel		vented		open air	rough orifice	full vessel re	oreadijng		ncl. boiling		nd evaporatio	confined		open air		ap. Expl. BLEV						ş		avoid entry of		linteraction										
		e	larger scales	lab/small scale	larger scales	obe	liquid (two-phase) flow through orifice	full bore liquid (pipelines), full vessel re	formation of spill - pool spreadijng	spill evaporation	two-phase flow in liquid, incl. boiling	heat transfer from ground	condensation (20-90K) and evaporatio	lab/small scale	larger scales	ope	heat conduction in storage material	Boiling Liq. Expanding Vap. Expl. BLE		natural ventilation	forced ventilation	post-accident inerting	recombiners	preventive ignition, ignitors	venting of deflagration	pressurisation of zone to avoid entry of	shut down systems	blast wave protective wall interaction		sensors performance	igniters performance	recombiners performance	je	ials	explosion impact	thermal impact	mechanical impact	dynamic pressure load
		lab/sn	larger	lab/sn	larger		liquid	full bo	forme	spill e	two-p	heat 1	conde	lab/sn	larger		heat (Boilin		natura	force	post-	recon	preve	ventir	press	shut e	blast		senso	ignite	recon	storage	materials	explo	therm	mech	dvnar
AM-1 AM-2																													X				X			X		L
AM-3	-															X		X											X						X	X	X	Ļ
M-4	-							-				-								<u> </u>									X	X			X	X				3
M-5																													X X	^				X				╞
M-6	H																			-									x	X				~				F
A-1																													~	~								T
A-2																																						F
-1		2	x		x	x	х	X	X	X	X		X																х	X	х		x		X	X		
-2		2	x		x	Х	х	x	x	X	x		X																х	X			x	x		X		
-3																													х	X			x	X		X		
4																													Х	X			X	X		X		
-1																																	X	X				
-2	L																												х						X	X		
-4	_							-																														-
-5	H																				~	~	×	v			~											-
-6	H,	x		х		х			x	x				x				x		x		X X	X	X X			X									X	х	2
-7	f	^		^		x		-	^			-		^		х		^	x	x		^		x	X				х						x	x	~	
-8	H					x										x		x	x	x				x	X				x						X	x	X	+
-9																													X							X		F
J-1																													х			х						T
J-2																													х			X						ſ
J-3																													х			х						
J-4																													Х			х						[

				G	aseo	ous r	eleas	е									Dis	spers	ion											lg	nitio	n										Со	mbus	tion	/Exp	losio	n					
		lab/small scale conf	larger scales	lab/small scale vent	larger scales	open Dermeation	subsonic release	choked flow (sonic) release	full bore rupture (pipe), full vessel rupt	turbulent flow in pipes, transport of H2	lab/small scale confined	larger scales	larger scales	open air	impinged jets	obstacle-generated turbulence	effect of obstacles on flow patterns	armospheric conditions inci. wind heat transfer from environment	natural ventilation (for partially confine	forced ventilation	buoyancy effects	stable stratification	turbulent mixing (in presence of large v	laminar diffusion	compressible eff. (shocks, under-expai	let lassed secto	lab/small scale confined larger scales	open air	autoignition (incl. effect of additives)	snock ignition weak / mild ignition (incl. static electrici	strong ignition [forced ignition]	direct initiation of detonation	jet ignition (ignition by hot jet or combu	radiative ignition	hot surface ignition flammability limits	lab/small scale ('bomt confined	larger scales (vessels	lab/small scale (bomb larger scales (vessels	lab/small scale open	larger scales	laminar flame	cellular flame	wrinked flame	self turbulising flame	flame acceleration / deceleration (due '	triple flame turbulent deflagration	DDT (due to flame accelaration, shock	detonation	quenching (global or local) standing flame (diffusion flame)	jet fire	spill fire	multiphase combustion (for liq. H2) heat radiation & absorption
FZK-1)	ĸ)	<			X	X		2	¢	Х			х	X								X	ς Ι)	(х							х	Х	x	X	x			
FZK-2)	k	x				X	X		2	k x	<u> </u>												X	ζ.)	¢	х							X	Х	(X			
FZK-3)	ĸ)	<			X	X		2	(Х												X	ζ.)	(х							Х	Х	(X			
FZK-4																											Х			х×	(X	(< T				Х	Х	(X	X	X			
FZK-5)	ĸ)	ĸ		X	X			х		Х		х	x	x			X	x	х	X	x	X	ς Ι												х							X	Х	(X	X	X	:	x
FZK-6																										>	(X	Х	(X	X	X			
FZK-7)	k	х				X	x		2	k x													X	ζ.)	(Х							х	Х	(X			
FZK-8	Τ																									>	(x	X	(X	(хx	x					x	x							x			
FZK-9	Т					(X	X				x	(х	х	x			x	x		X	x	X	x	()	(X	(x															X	:	x
GC-1																																								(X	x	X	(
GC-2)	ĸ				X	x			2	(x			X																		х						X	x	Х	(
GC-3																																				x)	x						X					x			
GC-4										\square																												х						X	x	X	(
GC-5)	c	х						X	x	X	(X	X				
GC-6																																				x)	x						x		x	-		x			
GC-7	1)	ĸ				X	x			2	(x	x				x		X	x																												
GC-8	1																															\top				x					x			x		X	(
GC-9	1						1																								1	1)	x							x	x						
GC-10							1																								1	1	1)	хх							X	X	-					+

					Li	iqui	d rele	ease					Ex		ion tora		luid					Mitig	gatio	n					E	quip	ment	and	Dev	rice	Testi	ng	
		confined (vessel		vented	open air	v through orifice	es), full vessel re	ol spreadijng		id, incl. boiling	pun	() and evaporation		contined	open air	rage material	J Vap. Expl. BLE						nitors		to avoid entry of		wall interaction				ance						q
		lab/small scale larger scales	lab/small scale	larger scales		liquid (two-phase) flow through orifice	full bore liquid (pipelines), full vessel re	formation of spill - pool spreadijng	spill evaporation	two-phase flow in liquid, incl. boiling	heat transfer from ground	condensation (20-90K) and evaporatio	lab/small scale	larger scales		heat conduction in storage material	Boiling Liq. Expanding Vap. Expl. BLE		natural ventilation	forced ventilation	post-accident inerting	recombiners	preventive ignition, ignitors	venting of deflagration	pressurisation of zone to avoid entry of	shut down systems	blast wave protective wall interaction		sensors performance	igniters performance	recombiners performance	storage	materials	explosion impact	thermal impact	mechanical impact	dynamic pressure load
FZK-1	1												x			x						x	x	x		x	x	x	х	x	x			x	x		x
FZK-2													x			x						X	x	x		x		x	х	x	x			x	x		x
FZK-3													x			x						X	x	х		x		x	х	x	X			X	X		х
FZK-4																											x										
FZK-5			x			Х	K			X		Х						x		X		X		х				x			X			X	X		х
FZK-6																		x						x													
FZK-7													x			x						X	X	x		x		x	х	x	X			X	X		X
FZK-8																		x				X															
FZK-9			x			Х	x			X		Х																									
GC-1																																					
GC-2																-		x						x										X	X		х
GC-3																																					
GC-4																																					
GC-5																-		x						X				x						X			
GC-6																		x						x				x						x			
GC-7						F			\top								1					1									1						
GC-8	1																	x																			
GC-9						F										<u> </u>		x						x							t						
GC-10									1								1					1									t						

			G	aseou	is rel	ease									Dis	spers	ion												lgniti	on											Co	mbu	stior	۱/Ex	plosio	on						
	ab/small scale	trger scales	ab/small scale vent	arger scales	permeation	subsonic release	choked flow (sonic) release	turbulent flow in pipes, transport of H2	b/small scale	arger scales	ab/small scale vented	rger scales	impinged jets	obstacle-generated turbulence	effect of obstacles on flow patterns	auriospireiro contautoris inci. Wina neat transfer from environment	natural ventilation (for partially confined	forced ventilation	buoyancy effects	stable stratification	turbulent mixing (in presence of large v	turbulent mixing (decaying conditions)	compressible eff_(shocks_under-eynar	unpressibile en. (sriocks, under-expan	b/small scale confined	open air	autoignition (incl. effect of additives)	shock ignition	weak / mild ignition (incl. static electric	strong ignition (forced ignition) direct initiation of detonation	jet ignition (ignition by hot jet or combu		hot surface ignition	flammability limits	ab/small scale ('bomt confined arger scales ('vessels	- de	vented arger scales (vessels	ab/small scale open		detonation tubes laminar flame	cellular flame	wrinked flame	self turbulising flame	flame acceleration / deceleration (due	triple flame turbulent deflacration	turburent denagration DDT (drie to flame accelaration shock	detonation	quenching (global or local)	standing flame (diffusion flame)	jet fire soill fire	spill life multiphase combustion (for lid. H2)	neat radiation & absorption
HSL-1	<u>_0</u>	<u>∞</u>	<u>0</u>			s	0 4		<u>0</u>	X	<u>_</u>		.=	0	0 0	2 2		12	<u>_</u>	s	루	= 1	2 0	,	<u></u>		9	s	5	ω τ 	<u>.e.</u>	. 22	2	=	<u>a</u> <u>a</u>	<u>a</u>	<u> 0</u>	<u>a</u>	<u>a</u>	<u>6</u>	ō	3	ō.	÷	+ 4	2 0	Ū	σ	50	ē, ā		<u> </u>
HSL-2		Â		x						Â		x													x										^										-							+
HSL-3																																					x				+											
HSL-4																																																				
HSL-5				x																																					1											
HSL-6																																					x															
HSL-7																									х																											
HSL-8																																																				
HSL-9																																																				
HSL-10																																																				
HSL-11																																																				
HSL-12																																																				
INA-1																																																				
INA-2																																																				
INA-3																																																				
INA-4																																									1											\top
INA-5																																																				\square
INA-6																																									1											\top
INA-7																																									1											\top

					Lic	quid	rele	ase					Ex	plos	ion tora		quid					Mitiç	gatio	n					E	quipi	nent	and	Dev	vice	Testi	ng	
	confined (vessel		vented		open air	through orifice	ss), full vessel re	spreadijng		d, incl. boiling	pu	and evaporatio		contined	open air	Ē	Vap. Expl. BLEV						itors		to avoid entry of		vall interaction				Jce						
	lab/small scale	ah/email coala	D	larger scales	0	liquid (two-phase) flow through orifice	full bore liquid (pipelines), full vessel re	formation of spill - pool spreadijng	spill evaporation	two-phase flow in liquid, incl. boiling	heat transfer from ground	condensation (20-90K) and evaporatio	lab/small scale			heat conduction in storage material	Boiling Liq. Expanding Vap. Expl. BLE		natural ventilation	forced ventilation	post-accident inerting	recombiners	preventive ignition, ignitors	venting of deflagration	pressurisation of zone to avoid entry of	shut down systems	blast wave protective wall interaction		sensors performance	igniters performance	recombiners performance	storage	materials	explosion impact	thermal impact	mechanical impact	dynamic pressure load
HSL-1																		x		x								x						x			
HSL-2					X																																
HSL-3																			х	X	X																
HSL-4															x		X											x							X		
HSL-5																																					
HSL-6																												Х							X		
HSL-7																																					
HSL-8																												Х								X	
HSL-9																												Х								X	
HSL-10																												х								X	
HSL-11																												Х								X	
HSL-12																												х								х	
INA-1																												х					X				
INA-2																												x					Х				
INA-3																												x					x				
INA-4																												x					х				
INA-5																												x					x				
INA-6																												x					x				
INA-7																												x					x				

Table 4 (contd.): Categorised facilities of the HySafe partners

		G	aseou	ıs rel	ease							Dispe			Ŷ		Ū						Ignit		ŗ	U	1						Cor	nbusti	on / Ex	plosio	n				
	lab/small scale conf	lab/small scale vent	larger scares open	permeation	subsonic release choked flow (sonic) release	full bore rupture (pipe), full vessel rupti turbulent flow in pipes, transport of H2	lab/small scale confined larger scales	lab/small scale vented	larger scares open air	impinged jets	obstacle-generated turbulence effect of obstacles on flow patterns	atmospheric conditions incl. wind	heat transfer from environment natural ventilation (for partially confine	forced ventilation	buoyancy effects stable stratification	turbulent mixing (in presence of large v	turbulent mixing (decaying conditions)	compressible eff. (shocks, under-expan	lab/small scale	larger scales	open air	autoignition (incl. effect of additives) shock ignition	weak / mild ignition (incl. static electric	strong ignition [forced ignition]	direct initiation of detonation	radiative ignition	hot surface ignition flammability limits	lab/small scale ('bomt confined	lab/small scale (bomb	larger scales (vessels lab/small scale	larger scales	detonation tubes laminar flame	cellular flame	wrinked flame self turbulising flame	flame acceleration / deceleration (due	triple flame turbulent deflagration	DDT (due to flame accelaration, shock	detonation	quenching (global or local) standing flame (diffusion flame)	jet fire	spill life multiphase combustion (for liq. H2) heat radiation & absorption
INE-1																					Ī										x					X	x	x	x	x	
INE-2	1						x									x	x		x				x)	ĸ	x	x		< l)	(x	X	X	(
INE-3							х								x	x x				x			X)	ĸ)	c)	(X X X	X	X	(
INE-4							Х							X	x	x x	X			x			X)	()	(X	X	X	(
INE-5																				x					x		X		x 🛛		2	x		x		X	x	X	x		
INE-6																			X				X				x x							x	(
INE-7	X			X	ХX	X	X								x	K X	X		X				X	X 2	x	x x	xx	×	۲ I)	(x	X				X			
INE-8	_			L			_												X			x	X	X	X X	x x	xx	X)	(X	X				X		$\downarrow \downarrow$	
INE-9																												_			X	_							X		x x x
INE-10 INE-11	4		X	_	XX	XX			X	X	xx	X				X		X			-							_			x)	(x >	X	X		X	X	<u> </u>	X
INE-12	-			L			_											_			-							_				_								++	
JRC-1	X			X	XX		_											_			-				_			-				-					_			+	
JRC-2	-			_			_									_		_			-							-				-		_			_	_		+	
JRC-3	-			L			-									_		_			-				_			-				-		_			_			++	
KI-1	-			-			-					_						_						.	~			-				-								++	
KI-2	-			┝			-					+			_	_		-			X X	_		X	x x			-				-)	<u> </u>	X	_	x x		+	
KI-3	-			⊢			-														x			· ·	^ ,	,		-				-					x	_		++	
KI-4				⊢		+ $+$						+		++			+	+	x	ľ	^-	+					+	x							x	\vdash	^	<u> </u>	x	++	
KI-5				⊢								+		+	-		+		x		-	+					$\left \right $	^			,	x			x	Y		x		++	
KI-6				⊢		++						+		+			+	+	x			+					+					_		x >				X		++	
KI-7				⊢								+			+		+		x			+										x		x)		X	x			\ddagger	
KI-8																		+	x		-			X	x		x					x			X	X				++	
KI-9				F								+		$\uparrow \uparrow$				+		x					-		X	-				x			X	X				++	
KI-10				F		\uparrow						\top		$ \uparrow $	\top		$ \uparrow $		x										x			x			X			X		$\uparrow \uparrow$	
KI-11				F								\uparrow		$ \uparrow $						x				x				×												$\uparrow \uparrow$	
KI-12												\top		$ \uparrow $					x				X					x)	(x					\square	
KI-13			x		X				x												x										x									\square	
Undata	JIE																	~	127	~																			-	6 IDC	

Updated IEF documents

		Liquid release											Exp	plosi st	on o orag		luid					Mitig	jatio	n					Ec	quipi	nent	and	Dev	vice 1	Festi	ng	
	0										atio		st	ora		Щ	\vdash			Г				° >		ç											
	o oooriy poorgaoo		vented		open air	liquid (two-phase) flow through orifice	full bore liquid (pipelines), full vessel	formation of spill - pool spreadijng		two-phase flow in liquid, incl. boiling	pun	condensation (20-90K) and evaporation	confined		open air	heat conduction in storage material	Boiling Liq. Expanding Vap. Expl. BLE						nitors	_	pressurisation of zone to avoid entry o		blast wave protective wall interaction				nce						Ð
	scale	lles	scale	les		o-phase) flov	iquid (pipelin	of spill - poc	oration	e flow in liqu	heat transfer from ground	ition (20-90k	scale	les		duction in sto	q. Expanding		entilation	ntilation	post-accident inerting	ers	preventive ignition, ignitors	venting of deflagration	ation of zone	shut down systems	e protective		sensors performance	igniters performance	recombiners performance			impact	npact	mechanical impact	dynamic pressure load
	lab/small scale	larger scales	lab/small scale	larger scales		liquid (two	full bore li	formation	spill evaporation	two-phase	heat trans	condensa	lab/small scale	larger scales		heat conc	Boiling Li		natural ventilation	forced ventilation	post-accid	recombiners	preventiv	venting of	pressuris:	shut dowr	blast wav		sensors p	igniters p	recombin	storage	materials	explosion impact	thermal impact	mechanic	dynamic p
INE-1														х			X	x									х	х				х		х	х	Х	x
INE-2																		x						X		Х		Х	х								
INE-3																		x						X		X		Х	х								
INE-4																		x						X		X		Х	х					х			X
INE-5																		x						X		X		Х	х					X			X
INE-6																												Х	х	х							\square
INE-7																												Х	х	х							\square
INE-8																												Х	х	х							
INE-9					Х																																
INE-10					Х	х	X	X	X	X	X	X						x									Х	Х	х					Х	X		X
INE-11																												Х	х								
INE-12																												Х	х		X		Х				
JRC-1																												Х				X	X				
JRC-2																												х	х								
JRC-3																												х				x					
KI-1																																					
KI-2																																					
KI-3																																					
KI-4																																					
KI-5																																					
KI-6																																					
KI-7																																					
KI-8								1										1	F																		
KI-9																			F																		
KI-10								1																													
KI-11													1						⊢																		\square
KI-12								1											F																		
KI-13								1											⊢																		
L 11							1	1								21	1	32	9		1											1	1				

			Ga	iseou	s rele	ease										D	ispe	rsior	۱											lg	Initio	n											Com	busti	ion / I	Explo	osion							
	scale	cont	ab/small scale vent	open	ation	subsonic release	choked flow (sonic) release	full bore rupture (pipe), full vessel ruptu	turbulent flow in pipes, transport of H2	all scale confined	arger scales	rented cales	onen air	200	obstacle-generated turbulence	effect of obstacles on flow patterns	atmospheric conditions incl. wind	neat transfer from environment	natural ventilation (for partially confined	Torced Venulation		stable stratification turbulent mixing (in pressure of lorge)	turbulent mixing (in presence of large v turbulent mixing (decaving conditions)	laminar diffusion	compressible eff. (shocks, under-expai	all scale	confined	open air	autoignition (incl. effect of additives)	snock ignition weak / mild ignition (incl. static electrici	strong ignition [forced ignition]		et ignition (ignition by hot jet or combu	radiative ignition	hot surface ignition flammability limits	omt	arger scales ('vessels		arger scales (vessels	ab/small scale open arger scales	detonation tubes	r flame	flame	wiinkeu nanne self turbulision flame	flame acceleration / deceleration (due -	ame	turbulent deflagration	DDT (due to flame accelaration, shock	tion	quenching (global or local)	standing tlame (diffusion tlame) iet fire		multiphase combustion (for liq. H2)	neat radiation & absorption
	lab/small	larger scales	lab/small sca	laiyei o	permeation	uosqns	choked	full bor	turbule	lab/sma	larger s		0	impinged jets	obstacl	effect c	atmosp	heat tra	natural	rorced	puoyai	stable :	turbule	laminaı	compre	lah/sme	larger s		autoign	snock ignition weak / mild ig	strong	direct ir	jet ignit	radiativ	hot sur flamma	lab/sma	larger s	lab/sma	larger s	lab/small sca larger scales	detonat	laminaı	cellular flame	wiiriked self hiri	flame a	triple flame	turbule	DDT (d	detonation	duench	standin iet fire	spill fire	multiph	heat ra
TNO-1																			T				T			x)	<				X	x						Х			T	Ŧ							T	Ē
TNO-2																										x				>	_				x	x						х				1							1	
TNO-3																										x				>	ĸ				x	x						x												
TNO-4																										x					ĸ					x		х				х				+								
TNO-5																											х			>							x	х	c			х			1	+							1	
TNO-6																											Х			-	k x	(x	х	c			х)	x	+	x						1	
TNO-7																											Х				(X						x	х				х		_	x	+	x						+	
TNO-8																											X	x			-	x	x		x		X			х		X		_	хx	<u> </u>	-	x	х		x)	x	+	
TNO-9																			1		+		+				X		x)	-				X		x					X		_	x x	-	X						+	\square
TNO-10																											x			x	x	x	\mathbf{T}				~				x			-		+	1		х				+	
TNO-11																											~				-															+							+	
TNO-12																												x	х	>	< 1		x							х		x				+	x)	x	+	
TNO-13																			-				+							-	+	1													+	+					-	-	+	
UP-1		x				х	x)	c	х		-	x				x	x	X	x	+		+		х			X	(x		\square					х	c					+	╈	+	x		\vdash		+		+	
UP-2				x			x	x					x	x			х			1	-	-	+		+	1		x		_	< x		\square					x						+	╈	+			\vdash)	x	+	
WUT-1	x		х											Ê											+											x		x			x			3	хx	<u> </u>	x	x	x		-		+	\square
WUT-2	x		x											┢	\uparrow				+		+		+		+	1					+		\square	\square		x		x			x			_	хх		X		x	1	+		+	
WUT-3	x		x										T		+						+				+						+					x		x			x			_	x x	-	x		x				+	

					Lic	quid	rele	ase					Ex			of lic	quid					Mitig	jatio	n					E	quipi	ment	and	Dev	rice ⁻	Testi	ng	
						•					1			S	tora	ge																					
	confined (vessel		vented		open air	/ through orifice	es), full vessel re	l spreadijng		d, incl. boiling	pun) and evaporatio	confined	connea	open air	rage material	I Vap. Expl. BLE						itors		to avoid entry o		wall interaction				nce						7
	ab/small scale arrier scales	olocoll and a		arger scales		liquid (two-phase) flow through orifice	full bore liquid (pipelines), full vessel re	formation of spill - pool spreadijng	spill evaporation	two-phase flow in liquid, incl. boiling	heat transfer from ground	condensation (20-90K) and evaporatio	ab/small scale	larger scales		heat conduction in storage material	Boiling Liq. Expanding Vap. Expl. BLE		natural ventilation	forced ventilation	post-accident inerting	recombiners	preventive ignition, ignitors	venting of deflagration	pressurisation of zone to avoid entry of	shut down systems	blast wave protective wall interaction		sensors performance	igniters performance	recombiners performance	storage	materials	explosion impact	thermal impact	mechanical impact	dynamic pressure load
TNO-1			_													-																					
TNO-2																												-									
TNO-3																-																					
TNO-4																-												x						x			x
TNO-5																-								x				x	x					X			X
TNO-6																-				x				x			X	x	x	x			x			х	
TNO-7																<u> </u>			x	X		x		X			X	x	x		x		X			Х	
TNO-8																			x								х	-					x			х	
TNO-9																					x									x							
TNO-10																-											х	x					x	x		х	x
TNO-11																												x	х		x	x	x			х	
TNO-12																												x		x							
TNO-13																		x	x	x		x						x	х		x						
UP-1								1		1						F			x	X				x					x								x
UP-2											1					F			x																		
WUT-1											1							x						x			х	x						x		х	x
WUT-2											1					F		x						x			х	x						x		х	
WUT-3											1					F		x						x			х	x						x		х	

4 Descriptions of instrumentation

In order to complement the facility descriptions and to support the sharing of equipment in common experiments, the HySafe partners have provided unified descriptions of specific equipment and instrumentations. Similar to the facility descriptions, the descriptions of instrumentation are subdivided into two sections:

- Overview, and
- Technical details.

While the overview section gives a short introduction to the specific device by providing

- Name,
- Type, and
- Application

the technical details section helps assessing the specifications with regard to the specific experiments. Here, detailed information concerning

- General description,
- Dimensions / weight / mobility,
- Temperature and pressure range,
- Media,
- Commercial availability (in-house development or commercial), and
- References

are given.

The full compilation of instrumentation descriptions is given in Annex II. The compilation at hand is intended to serve as a tool for future common experiments in the HySafe context. However, the importance of an intensive personal exchange of experience must not be underestimated. This aspect is specifically considered in the series of IEF workshops on instrumentation techniques.

5 Conclusions

Although there will be a final update of this document at the end of the final funding period, the present deliverable D96 can already be regarded as the final formal result from the IEF activity of the HySafe project. In order to conclude the successful integration work in the final funding period and to prepare a good basis for the HySafe follow-up organisation, the present work programme will focus on the tasks

- Initiation of internal studies
- Continuation of the series of workshops
- Finalisation of the IEF documentation

While the series of workshops has already demonstrated the readiness of the IEF partners to share knowledge in the field of experimental work, the internal studies on challenging measurement tasks will demand a further level of co-operation. Especially with regard to the HySafe follow-up organisation this activity will give insight in the way how future common projects could be performed.

Annex I – Compilation of descriptions of experimental facilities

BAM	
CEA	
ET	
Fh-ICT	59
FZJ	
FZK	
GexCon	
HSE/HSL	
INASMET	
INERIS	
JRC	
KI	
TNO	
UNIPI	
WUT	

Partner: BAM

- Fire Testing Rig Facilities:

- Open Air Test Site Horstwalde
- Hydraulic Cycling Equipment
- Facility for testing and calibration of gas sensors
 Tribometers for oscillating (PT1) or sliding friction (CT2, CT3)
- Facility for testing and calibration of gas sensors

Overview

Name	Fire testing rig for tanks and other pressure vessels or other equipment for dangerous goods
Туре	open propane gas fire
Scale	full scale
Experiments	test of the behaviour of pressurized or protective containers under fire load

Technical details

Dimensions	size of test object (max.): 8 m x 3 m x 3 m (LxWxH); mass of test object (max.): 100 t
Temperatures	1100 °C
Fire Intensity	adjustable from 50 to 110 kW/m² energy input, depending on test object size
Fuel	LPG
Special features	The flame configuration can be adapted to the test object in such a way that it is completely engulfed in flames. A wide variety of fire situation options can be simulated by means of fire intensity controls

Experiments – Equipment

Experiments	behaviour of pressure vessels and other appropriate objects in a hydrocarbon fire
Instrumentation	fire intensity and size can be adapted to the test object
Schedule	by agreement

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

Depends of the experiment

What kind of movable equipment is available and could be shared?

This test rig is not transportable at all; there is, however, a smaller movable rig especially for gas cylinders.

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

Wood instead of propane fire

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

-

_

Which additional equipment could enhance your results?

Overview

Name	Open Air Test Site Horstwalde
Туре	open air test site
Scale	large scale
Experiments	fire, drop, impact and other tests for flammable, pressurized or otherwise dangerous goods or vessels containing them

Technical details

Dimensions	The whole test site is a territory which extends over ca. 12 km ² , with various test installations at different places. The most prominent feature is an explosion test site of 400 m diameter (photo) which is equipped with an observation shelter and other basic infrastructure. The site is capable of fire and explosion tests up to an equivalent (NEQ) of 150 kg TNT.
Special features	It is difficult to find a place which is remote enough for large scale experiments and has at the same time the infrastructure necessary for

Experiments – Equipment

Experiments	The site is appropriate for almost any kind of experiment which fits into the given space. Among the tests performed regularly by BAM are fire tests with packages of explosives and other dangerous goods as required by transport law. A spectacular test done once involved firing a railway car filled with propane until it burst.
Instrumentation	Basic infrastructure is provided. Experimentators are required to bring their specific scientific instrumentation with them.
Schedule	on agreement
Further particulars	The test site is close to the village of Horstwalde which is about 50 km south of Berlin.

Information for the preparation of integration

• Exchange of instruments and personnel

scientific work.

How many persons are needed to prepare/conduct experiments?

Depends of the experiment

What kind of movable equipment is available and could be shared?

Basic fixed infrastructure is provided and can be used.

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

The facility will not be modified since it is already very flexible

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Which additional equipment could enhance your results?

100

Overview

Name	Hydraulic Cycling Equipment	
Туре	-	*BAM
Scale	full scale	
Experiments	investigation of pressure receptacles under pulsating pressure load	

Technical details

Dimensions	test receptacles up to 4000 mm length and 800 m diameter
Temperatures	-60 +90 °C
Pressure	between atmospheric and 1200 bar, up to 30 pressure cycles per minute, stroke volume up to 6 l
Media	test objects are filled with a water-glycole mixture
Special features	unique in Europe

Experiments – Equipment

Experiments	Pressure receptacles are subjected to cyclic pressure load as required by the user of the regulation. Life time assessment or fatigue strength can be observed. Both metallic and composite receptacles can be tested.
Level of detail	pressure deviation ±10 bar at a test pressure of 1200 bar
Instrumentation	pressure, temperature, volume change
Schedule	by agreement

Further particulars -

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

For test preparation and start depending on the experiment; test can run automatically part of the time.

What kind of movable equipment is available and could be shared? *none*

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

-

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Which additional equipment could enhance your results?

Overview

Name	Facility for testing and calibration of gas sensors
Туре	test gas mixture system and test chamber
Scale	laboratory scale
Experiments	testing and calibration of gas sensors

Technical details

Dimensions	Facility: approx. 2.0 x 1.0 x 0.8 meters Test chamber: approx. 2.5 litres volume Test chambers are equipped with five (or up to ten) sensors of different types. Two test chambers have been developed, optimised for a small and a larger volume, respectively, and accurately defined gas flow.
Temperatures	- 40 to +180 °C

Pressure Test chamber 0.8 to 1.3 bar

Media *hydrogen, air, water vapour and up to 3 other gases (e.g.CO₂, SO₂, NH₃, propane...) and up to 2 other vapours (e.g. ethanol, isooctane)*

- Special features Reliable and accredited method by using certified gas mixtures and calibrated electrical measuring devices. A sophisticated gas handling and control systems allows simulating real ambient conditions (complex gas mixtures, humidity, altitudes).
- Further particulars Test gas mixtures of defined composition are generated dynamically from appropriate parent gases in cylinders and transferred into test chambers containing the sensors under investigation. The gas blending system provides for continuous variation of mixture composition, including humidification, at a high dynamic range. Gas blending is performed using mass-flow controllers (MFC), which control four different gas streams. The system is able to generate gas mixtures containing up to four components, an inert carrier gas (synthetic air or nitrogen) and humidity. A personal computer controls all parts of the system via an IEEE-bus net.

Experiments – Equipment

Experiments	Assessment of hydrogen sensors performance with respect to: - sensitivity to target gas - influence of temperature, humidity and altitude - cross sensitivity to other gases/vapours - aging and reproducibility
Instrumentation	Gas sensors are tested and calibrated using test gas mixtures of defined composition and humidity generated dynamically from appropriate parent gases or by permeation. The gas mixtures

generated are analysed using a chilled mirror hygrometer, a gas chromatograph and a quadrupole mass-spectrometer to check the accuracy of the pre-determined mixture composition and its humidity.

Gas system	
Flow control	thermal mass flow controller
Number of gas components	maximum 4
Gas dilution	1:1 to 1:1000
Total gas flow	maximum 1I/min
Humidity	-80 to +80°C (<i>t_d</i>); 0,1 to 100% r.h.
Data acquisition	
Measurand	Impedance, capacity, resistance, phase angle, dielectric loss
Frequency range	100 Hz to 40 MHz
Number of sensors	5 internal, 5 external
Sensor chamber thermostat to:	-40 to +180°C, ±0,3 K

Schedule The facility is in operation, the time needed for preparation of experiments will be about 1 to 3 day, the time needed for conduction of experiments will depend on the test. The sensors output data will be collected and visualised in real time and recorded on general laboratory software platforms (LabView, Excel)

Tools general laboratory software, LabView, Excel

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

To prepare/conduct experiments 2 persons are needed

What kind of movable equipment is available and could be shared?

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

The system has been designed in view of the follow major upgrades:

- sensor response time
- sensitivity, aging, reproducibility
- reaction to sudden changes of environment (temperature, humidity, gases)
- calibration of gas sensors

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

BAM is highly interested in co-operating with both manufacturers and users, to help developing a unified procedure for testing the hydrogen sensors performance in a controlled environment. BAM can provide assistance to companies developing safety sensors in meeting the performance requirements demanded by users.

Which additional equipment could enhance your results?

The equipment is integrated in multipurpose laboratory of BAM.

Name	<i>Tribometers for oscillating (PT1) or sliding friction (CT2, CT3)</i>
Туре	PT1, CT2, CT3
Scale	lab scale
Experiments	friction and wear at elevated pressures or at cryogenic temperatures and in cryogenic liquids, including hydrogen

Technical details

Dimensions	samples up to ca. 10 cm diameter
Temperatures	ambient (PT1); between ambient and 4 K (CT2, CT3)
Pressure	10 ⁻⁶ ambient (CT2, CT3), 20 bar (PT1)
Media	liquid or gaseous helium, hydrogen, or nitrogen; gaseous methane (PT1)
Special features	frequency: 0,1 to 20 Hz, stroke : 0,1 500 mic; normal forces between 1 and 20 N (PT1)
	up to 3000 rotations per minute with a relative velocity of up to 6 m/s; normal forces between 5 N and 500 kN (CT2, 3)

Experiments – Equipment

Experiments	Selected pairs of material are investigated for their behaviour under oscillating (PT1) or sliding (CT2, CT3) friction by moving one partner against the other (pin on disk). Tests of the performance and lifetime of axial bearings
Instrumentation	force, displacement, pressure, temperature, sample investigation after test
Schedule	by agreement

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

Depends on the experiment, normally 1 (PT1) or 2 (CT2, CT3) What kind of movable equipment is available and could be shared? none

• To prepare filling possible gaps

_

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

PT1: pressures up to 100 bar CT2, CT3: The cryostat can be used for any experiment which fits in

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Which additional equipment could enhance your results?

Name	Facility for testing and calibration of gas sensors
Туре	test gas mixture system and test chamber
Scale	lab scale
Experiments	testing and calibration of gas sensors
Fechnical details	

Т

Dimensions Facility: approx. 2.0 x 1.0 x 0.8 meters / 150 kg

Temperature range - 40 to +180 °C

Pressure range Test chamber 0.8 to 1.3 bar

Media hydrogen, air, water vapour and up to 3 gases (e.g. CO₂, SO₂, NH₃, propane... and up to 2 other vapours (e.g. ethanol, isooctane)

Description Gas sensors are calibrated and tested using a test system where test gas mixtures of defined composition are generated dynamically from appropriate parent gases in cylinders. These test gas mixtures are transferred into test chambers containing the sensors under investigation. The gas blending system provides for continuous variation of mixture composition, including humidification, at a high dynamic range). Gas blending is performed using mass-flow controllers (MFC), which control four different gas streams. The blending process and the resulting composition are regulated by varying the gas flow through the MFC's. The system is able to generate gas mixtures containing up to four components, an inert carrier gas (synthetic air or nitrogen) and humidity. A personal computer controls all parts of the system via an IEEE-bus net.

In-house/commercial in-house

References BANACH, U. and HÜBERT, T.: Detection of hydrogen with catalytic sensors, in Gerlach, G. (Hrsg); Dresdner Beiträge zur Sensorik, Band 29, 8. Dresdner Sensor-Symposium, 10.-12. Dezember 2007, Dresden: TUDpress, S.133-136; ISBN-13: 978-3-940046-45-1

Partner: CEA

Facilities: - MISTRA - GAMEL

Name	MISTRA
Туре	cylindrical steel vessel
Scale	originally designed as 1/10 th in linear scale of Pressurized Water Reactor containment
Experiments	studies of H2 (simulated by He) release and distribution in a confined geometry

7m high, 4m diameter, 100m³

Technical details

Dimensions

Temperatures	Inner walls (water circuit) may be set at temperatures up to 140°C
	(controlled within 1°C). The injected helium gas (to represent
	hydrogen) may be heated (up to 200°C) to increase buoyancy effects.

Pressure Design pressure = 6 bars

Media Air and helium.

Special features Large scale, with 3D spatial instrumentation (thermocouples, gas sampling points, LDV at several locations) to study helium release in jet or plume regimes in confined or semi-confined (with opening of the facility) geometry. Data suitable for CFD code validation. As of end of 2004, compartments will be installed inside the facility to study H2 distribution in a complex geometry.

Further particulars The facility is mainly used in the framework of containment thermalhydraulics and hydrogen risk for Pressurized Water Reactors. As such, it also contains a steam injection line, condensate collectors and a spray system.

Experiments	Helium distribution tests (axisymmetric configuration, performed in 1999-2000). New tests (3D configuration) scheduled in 2004.	
Level of detail	Gas concentration measurements, velocity measurements using LDV, vane wheels or hot wire anemometry. Spatial resolution about 0.5m in horizontal and vertical directions.	
Instrumentation	Gas temperature Pressure	Thermocouples
	Gas composition	Simultaneous sampling and analysis by mass spectrometry
	Velocity	LDV (on different radii), PIV, hot wire anemometry, vane wheels

 Schedule
 Tests are generally conducted within one day. Post-processing of results within one week.

 Tools
 Post-processing of results using MATLAB

 CFD analyses have been performed using the CAST3M code of CEA (Boussinesq model, Low Mach number model, k-ε model or mixing length)

Further particulars

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

3

What kind of movable equipment is available and could be shared?

LDV bench, mass spectrometry. Sharing of equipment is possible but needs to be approved internally by CEA.

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

A more powerful PIV system with a larger frame would allow to have a more complete picture of the velocity field in the containment. (the current PIV system is limited to a small frame of about 20cm length).

Non-intrusive optical techniques to measure concentrations could be investigated and compared to measurements using sampling and mass spectrography.

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Good control of initial and boundary conditions for study of H2 release and distribution in confined geometry. Compartments will add geometric complexity. The instrumentation yields data suitable for CFD code validation.

Which additional equipment could enhance the results of your experiments?

Better velocity measurements using a more powerful PIV system. Alternative measurement systems for concentration measurements to improve transient analysis (faster sampling and analysis).

Name	GAMEL
Туре	cubic polycarbonate vessel
Scale	small scale
Experiments	detailed studies of H2 (simulated by He) release and distribution in a 3D confined geometry

Technical details	
Dimensions	1 m³ vessel (0.91x0.91x1.22)
Temperatures	test at normal temperature
Pressure	test at normal pressure
Media	air, helium, nitrogen, and others gas
Special features	idealised geometry and transparent for optical diagnostics
Further particulars	-

Experiments		signed for detailed analytical studies of flow gas mixtures. This facility will be available in 05.
Level of detail	Gas concentration measurements (mass spectrometry or gas chromatography)	
	Anemometry), PIV (Par anemometry. We want Fluorescence) simultan	aracterisation by LDA (Laser Doppler ticle Image Velocimetry) and hot wire to use PLIF (Planar Laser-Induced eously to PIV diagnostic for concentration field non-intrusive optical techniques like UV y.
Instrumentation	gas temperature pressure gas composition velocity	thermocouples piezoelectric mass spectrometer (and PLIF, UV spectroscopy) LDV, PIV, hot wire anemometry
Schedule	tests are generally cond result within one week	ducted within one day and post-processing of

HySafe – Safety of Hydrogen as an Energy Carrier

Tools

Post-processing of results using MATLAB

CFD analysis have been performed with using the CAST3M code of the CEA (Boussinesq model, Low Mach number model, k- ε model or mixing length)

Further particulars

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

2

What kind of movable equipment is available and could be shared?

LDV bench, mass spectrometry. Sharing of equipment is possible but needs to be approved internally by CEA.

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

A more powerful PIV system with a larger frame would allow to have a more complete picture of the velocity field in the containment. (the current PIV system is limited to a small frame of about 20cm length).

Non-intrusive optical techniques to measure concentrations could be investigated and compared to measurements using sampling and mass spectrography.

• To prepare promotion and specialisation

Which features/possibilities would you like to promote?

Non-intrusive optical diagnostic

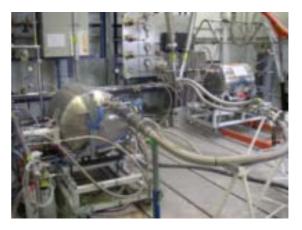
Which additional equipment could enhance the results of your experiments?

Partner: ET

Facilities:- Liquid hydrogen vacuum insulation rupture rig
- Liquid hydrogen tank test equipment

- Liquid hydrogen test rig for material tests
- High pressure hydrogen tank and component test equipment

Name	Liquid hydrogen vacuum insulation rupture rig
Туре	LH ₂ -car tank
Scale	full scale
Experiments	Experimental behaviour of LH ₂ -car tank under spontaneous rupture of vacuum insulation



Technical details

Dimension	0,2 m ³
Temperature	20 K
Pressure	4 bar
Media	LH ₂
Special features	Safe and flexible handling and test area LH ₂ supply in adequate quantities (10.000 litre)

Experiments	Experimental behaviour of LH ₂ -car tank under spontaneous rupture of vacuum insulation
Instrumentation	pressure temperature mass-flow
Schedule	Short availability, upon agreement case by case
Tools	High speed camera recording

Name	Liquid hydrogen tank test equipment
Туре	Tank test installation
Scale	Full scale
Experiments	Experimental study of tank and component failures

Technical details

Dimension	Full scale
Temperature	20 °K
Pressure	4 bar
Media	LH ₂
Special features	Adequate LH ₂ supply (10.000 litre) flexible test installation to meet various technical requirements

Experiments	Experimental study of tank and component failures
Instrumentation	LH ₂ -sensors temperature pressure mass-flow leak-rate, filling level etc.
Schedule	Short availability, upon agreement case by case
Tools	10.000 litre LH₂ storage and supply tank Safe hydrogen infrastructure

Name	Liquid hydrogen test rig for material tests
Туре	Vessel
Scale	Subscale, probes
Experiments	Behaviour of liquid hydrogen structures under mechanical and thermal loads

Technical details

Dimension	Vessel diameter 800 mm (probes Ø 250 mm)
Temperature	20 – 600 °K
Pressure	Vacuum to 1.5 bar
Media	LH_{2} , LN_{2} and GH_{2} , GN_{2} , GHe
Special features	Test of monitoring systems for composite containers (high pressure and LH ₂)

Experiments	Behaviour of liquid hydrogen structures under mechanical and thermal loads
Instrumentation	permeation temperature pressure
Schedule	Short availability, upon agreement case by case
Tools	Mass-spectrometer

Name	High pressure hydrogen tank and component test equipment
Туре	Test chambers (various)
Scale	Full scale
Experiments	Experimental study of tank and component failures Extreme temperature tests Fast fill and drain tests

Technical details

Dimension	Adapted to test specimen
Temperature	- 40 to + 85 °C
Pressure	up to 1500 bar
Media	GH₂
Special features	Flexible test installation to meet various technical requirements

Experiments	Experimental study of tank and component failures Extreme temperature tests Fast fill and drain tests
Instrumentation	pressure control temperature control etc.
Schedule	Short availability, upon agreement case by case
Tools	mass-spectrometer high-pressure compressor large storage volumes (1.5 m³ / 800 bar)

Partner: Fh-ICT

Fraunhofer Institut Chemische Technologie

- Facilities: - *H*₂ high pressure compressor
 - Heatable high pressure vessel
 - Device for flame jet ignition
 - High pressure vessel with windows
 - Closed detonation room
 - Splinter protected test box / area
 - Testing area
 - Test stand

4

Overview

Overview		
Name	H ₂ High Pressure Compressor	ARA WIND ATTACT
Туре	Remote controlled system based on Maximator DLE 75-2 compressor	
Scale	all	6 0
Experiments	medium and large scale material, compo tests.	nent and system tests, burst

Technical details

Dimensions	B 1,30m x T 0,6m x H 1m / 160kg
Temperatures	Media Temperature 50°C max.
Pressure	1.500 bar max.
Media	Hydrogen, others possible
Media inlet press.	45250 bar
Media Throughput	35050 l _N /min @ 2001000 bar
Drive air pressure	10 bar
Drive air consumption	4000 I _№ /min max.
Description	The compressor station is a mobile air driven remote controlled system

Name	Heatable high pressure vessel
Туре	vessel
Scale	small scale
Experiments	studies on decomposition and ignition induced by temperature increase and external ignition

Technical details

Dimensions Temperatures	20.6 cm³ vessel, spherical volume 38.6 cm³ vessel in a tube like modification heatable from 20 °C up to 500 °C
Pressure	static pressures up to 100 MPa, short pressure peaks up to 600 MPa
Media	hydrogen, air, nitrogen, non corrosive gases, solids
Special features	isothermal and non-isothermal experiments are enabled in a wide pressure and temperature range (up to 100 MPa and 500 °C)
	the system is able to withstand pressure peaks and therefore even explosion like reactions
Description	The system consists of 2 stainless steel chamber parts which are closed by an hydraulic system. The system is therefore statically leak tight up to 100 MPa and withstands short pressure peaks up to 600 MPa. It is heated by heating coils. Operation temperature range is from 20 °C up to 500 °C. Data acquisition and appropriate sensors enable measurements of long time duration (hours) and simultaneously deliver information of short time pressure changes (up to 40 MHz acquisition rate) caused e.g. by self-ignition.

Experiments	The test system enables measurements of the profiles and absolute values of pressure increase depending on temperature (isothermal and non-isothermal) in a wide pressure and temperature range (up to 100 MPa and 500 °C !). The system withstands pressure peaks and therefore even explosion like reactions. Ignition of pressurized gas mixtures in the high pressure and temperature regime have been investigated. Decomposition studies have been conducted.
Instrumentation	thermocouples pressure sensors

HySafe – Safety of Hydrogen as an Energy Carrier

Scheduleheating experiments with different heating rates are possible, these
experiments have a duration (depending on the heating rate) of 1 day
the number of ignition experiments in the high pressure regime during
one day depend on the selected temperature profileToolshigh speed data acquisition

Information for the preparation of integration

• To prepare exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

2

What kind of movable equipment is available and could be shared?

none

Name	Device for flame jet ignition	Star I have
Туре	cylindrical vessel with vent opening	A BARRAN C
Scale	large scale	
Experiments	studies on flame jet ignition	

Technical details

Dimensions	9.35m ³ vessel; total length 4.8m; outer dia: 1.6m; length of cylindrical part: 4.35m; wall thickness: 5mm; max static overpressure: 2bars; front side openings: ½, ¼, 1/8 of total front area
Temperatures	-
Pressure	static overpressure max. 2 bars
Media	-
Special features	-

Experiments - Equipment

Experiments	Vessel could be used for flame jet ignition of hydrogen-air mixtures located adjacent to the vessel opening; flame jet is generated by ignition of a hydrogen-air-mixture within the vessel at its rear side and then emerging from the vessel opening.
Instrumentation	pressure; gas composition; flame speed
Schedule	-
Tools	-

Information for the preparation of integration

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?


See above; additionally, the interaction of the flame jet with an obstacle located within the cloud outside of the vessel is possible: the obstacle is a 3 dimensional array of pipework, consisting of single cruciform plastic parts: Outer dim. of obstacle: 4x4x2 m³; volume blockage: 10%.

Name

ne High pressure vessel with windows

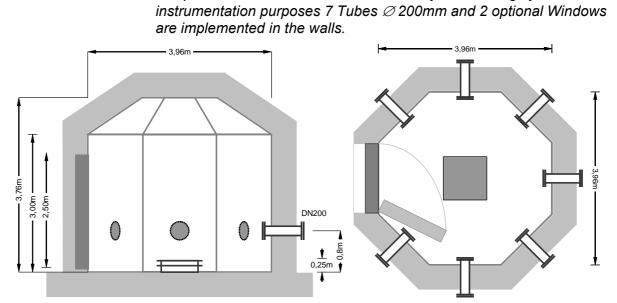
Type 1 litre high pressure vessel with windows

Scale small scale

Experiments Hydrogen-Air-explosions with initial pressures up to 3 MPa and time resolved spectroscopic measurements in the UV (OH-bands) and the NIR (water bands) and pressure measurement

Technical details	
Dimensions	1 litre
Temperatures	-
Pressure	up to 3 MPa
Media	e.g. Hydrogen-Air (others possible)
Description	- piezoelectric pressure transducer - high-speed-camera up to 40.000 frames/s - Spectroscopy:- UV: Diode-Array, 300-330nm, 0.1nm, scan 10ms - NIR: AOTF-spectrometer 1-2.6ym, scan 1ms

Experiments


Experiments Quantitative measurement of molecular band radiation in correlation to pressure and time, pressures, flame front velocities, laminar burning velocities depending on pressure

Technical details

Name	Closed detonation room
Туре	
Scale	2 Kg TNT equivalent
Experiments	detonation experiments with explosive gases, liquids and solids

Dimensions	45 m ³
Temperatures	-
Pressure	1 bar max. static burst pressure, dynamic overpressures up to 20 bar
Media	high explosives, explosive gases and liquids
Description	detonation chamber built of reinforced concrete with additional 20mm steel inliner. The room is equipped with a remote controlled door, overpressure outlet valve, exhaust chimney and venting system. For

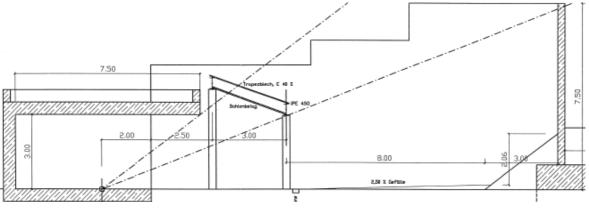
Cross and horizontal section of the detonation chamber

Splinter protected Test box / area

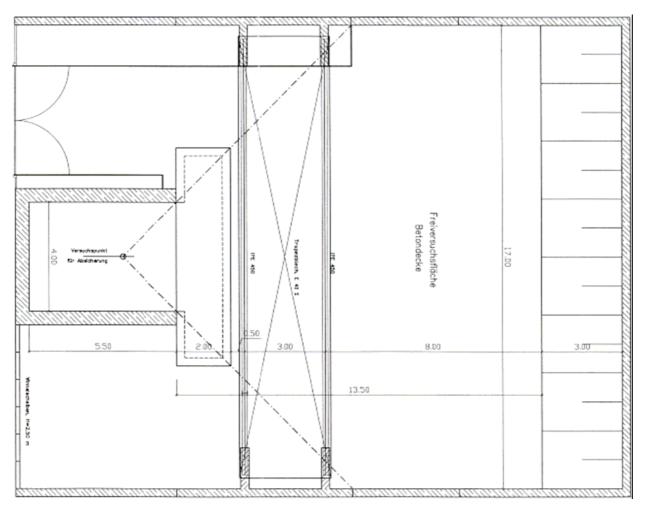
Overview

Name

Туре


Scale 1 Kg TNT equivalent

Experiments high pressure, free jet, burning and medium size explosion experiments



Technical details

Dimensions	Box: $B \times H \times T = 3m \times 3m \times 6m$ Area outside Box: $B \times L = 17m \times 15m$
Temperatures	-
Pressure	-
Media	-
Description	Splinter protected energetic material testing Box constructed of reinforced concrete. The area in front of the box is protected by a splinter protection roof and walls around. Protected control-room nearby. Universal testing-equipment and instrumentation setup possibilities.

Splinter protected Box - horizontal section

Splinter protected Box - cross section

Name	Testing area	
Туре	open-air	
Scale	full scale	
Experiments	studies on explosions, tank testing, hydrogen-release	

Technical details

Dimensions	18 m diameter
Temperatures	-
Pressure	-
Media	-
Description	protected testing-area protected control-room nearby universal testing-equipment setup possibilities

Name	Test stand
Туре	closed test stand with blow-out option
Scale	full scale
Experiments	multipurpose tests with energetic materials

Technical details

Dimensions	4 separated test stands (3x4m)
Temperatures	-
Pressure	-
Media	-
Description	test stands for energetic materials protected control-room nearby universal testing-equipment setup possibilities

Partner: FZJ

Facilities: – REKO-1 – REKO-2 – REKO-3 – REKO-4

Name	REKO-1
Туре	flow reactor
Scale	small scale
Experiments	studies on catalyst elements for H2 recombination under forced flow conditions

Technical details

- Dimensions 2.5 cm pipe diameter
- Temperatures up to 150 °C inlet gas temperature
- Pressure ambient pressure
- Media *hydrogen, air, nitrogen, water steam*
- Special features glass section enabling optical measurement of catalyst temperatures

Experiments	Catalyst elements to be used for hydrogen recombination are tested under steady-state conditions. Testing parameters are gas composition (hydrogen, nitrogen, air, water steam), gas temperature, flow conditions.	
Instrumentation	gas temperature catalyst temperature gas composition flow	thermocouples pyrometers hydrogen analyser oxygen analyser water steam analyser mass flow controllers
Schedule	one day needed for preparation, conduction, interpretation of experiments	
Tools	DeltaV Process Control, MS Excel	

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

1 person

What kind of movable equipment is available and could be shared?

pyrometers

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

Sensors testing, influence of different gas components

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Which additional equipment could enhance the results of your experiments?

-

Name	REKO-2
Туре	pressure vessel
Scale	small scale
Experiments	studies on catalyst elements for H2 recombination

Technical details

Dimensions	height: 1 m, volume: 156 litres
Temperatures	up to 150 °C initial gas temperature
Pressure	10 bar
Media	hydrogen, air, nitrogen, water steam
Special features	vessel evacuation in order to create inert N2 atmosphere

Experiments	Startup behaviour and depletion efficiency of catalyst elements to be used for hydrogen recombination are tested. Testing parameters are gas composition (hydrogen, nitrogen, air, water steam), gas temperature. The facility was especially designed for tests in inert N2 atmosphere.	
Instrumentation	gas temperature catalyst temperature pressure gas composition injection flow	thermocouples thermocouples pressure transducer hydrogen analyser mass flow controllers
Schedule	one day needed for preparation one day needed for conduction and interpretation of experiments	
Tools	DeltaV Process Control, MS Excel	

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

2 persons for preparation, 1 person for conduction

What kind of movable equipment is available and could be shared? *none*

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

Sensors testing, influence of different gas components

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Which additional equipment could enhance the results of your experiments?

-

Name	REKO-3
Туре	flow reactor
Scale	small scale
Experiments	studies on catalyst elements for H2 recombination under forced flow conditions

Technical details

Dimensions	46 x 5 cm² rectangular flow channel
Temperatures	up to 150 °C inlet gas temperature
Pressure	ambient pressure
Media	hydrogen, air, nitrogen, water steam
Special features	-

Experiments	Catalyst elements to be used for hydrogen recombination are tested under steady-state conditions. Testing parameters are gas composition (hydrogen, nitrogen, air, water steam), gas temperature, flow conditions.	
Instrumentation	gas temperature catalyst temperature gas composition flow	thermocouples thermocouples inserted inside the plates hydrogen and oxygen analysers mass flow controllers
Schedule	one day needed for preparation, one day needed for conduction and interpretation of experiments	
Tools	DeltaV Process Control, MS Excel	

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

1 person

What kind of movable equipment is available and could be shared? *none*

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

Sensors testing, influence of different gas components


• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Which additional equipment could enhance the results of your experiments?

-

Name	REKO-4 (under construction)	
Туре	pressure vessel	
Scale	medium scale	
Experiments	studies on catalytic recombiners under natura flow conditions	
Technical details	5	
Dimensions	height: 4.0 m, diameter: 1.5 m	

Temperatures	250 °C gas temperature	
Pressure	25 bar	
Media	hydrogen, air, nitrogen, water steam	

Special features flow field measurements with Particle Image Velocimetry (PIV)

Experiments	Studies on the operational behaviour of catalytic hydrogen recombiners under natural flow conditions. Testing parameters are gas composition (hydrogen, nitrogen, air, water steam), gas temperature.	
Instrumentation	gas temperature catalyst temperature gas composition flow field	thermocouples thermocouples hydrogen analysers PIV
Schedule	-	
Tools	DeltaV Process Control, MS Excel	

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

What kind of movable equipment is available and could be shared?

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Which additional equipment could enhance the results of your experiments?

-

Partner: FZK

Facilities: - A1 Vessel

- A3 Vessel
- A6 Vessel
- A8 Vessel
- 12 m detonation tube (DT)
- Flow Test Chamber (TC)
- Partially Vented Explosion Tube (PET)
- Explosion Bomb
- HyJet (Hydrogen Jet)

F

Overview	
Name	A1 Vessel
Туре	cylindrical vessel
Scale	full or large scale
Experiments	studies on turbulent Constant of the second states of the second states

Technical details	
Dimensions	98 m³ vessel, internal diameter 3.3 m, length 12 m
Temperatures	ambient
Pressure	up to 100 bar of static pressure
Media	hydrogen, air, nitrogen, oxygen.
Special features	full or large scale; licensed high static pressure 100 bar; multiple entries possible
Further particulars	several vents up to 800 mm in diameter; several windows for visual observations; internal volume can be divided on several joined rooms with different volume; regular grid with obstacles can be used inside the volume; A1 vessel can be connected with other large vessel (e.g. A3 vessel)

Experiments – Equipment

Experiments- experiments on turbulent combustion in uniform and nonuniform gas
mixtures at different initial pressure;
- effect of obstacles and multi-compartment (room connections with
different volumes) on flame acceleration and DDT;
- effect of venting and pre-compression in connecting rooms on flame
propagation regime;
- jet initiation of detonation;
- experiments on hydrogen distribution in closed volumeLevel of detailintegral

Instrumentation	gas temperature pressure gas composition hydrogen distribution velocity deformations	thermocouples piezoelectric, piezoresistive gauges mass spectrometer, gas flow control sonic hydrogen sensors photodiodes, ion probes strain gauges
Schedule	preparatory work of experimental set-up to specific test series requires one month; 1 – 2 days are needed for preparation and conduction of one experiment in the series; 1 day is needed for processing of raw experimental data	
Tools	standard software required for data acquisition system to convert analogous signals to digital form (ASCII or binary format)	
Further particulars	-	

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

3-4 persons are needed to prepare/conduct experiments

What kind of movable equipment is available and could be shared?

Data acquisition system processed by accompanying service team (1-2 persons)

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

Experiments on integrity of mechanical structures under detonation pressure load could be done using A1 vessel as secure shell against missiles.

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Large and full scale experiments on turbulent combustion and detonation, experiments under elevated pressures and extremely high pressure load, hydrogen distribution in closed volume.

Which additional equipment could enhance the results of your experiments?

Name	A3 Vessel
Туре	cylindrical vessel
Scale	full or large scale
Experiments	studies on turbulent combustion and detonations, vented explosions, hydrogen distribution

Technical details

Dimensions	33 m³ vessel, internal diameter 2.5 m, height 8 m
Temperatures	ambient
Pressure	up to 60 bar of static pressure
Media	hydrogen, air, nitrogen, oxygen
Special features	large scale; licensed high static pressure 60 bar, multiple entries possible
Further particulars	vessel has several vents of different sizes; internal volume can be divided on several joined rooms with different volume; regular grid with obstacles can be used inside the volume; A3 vessel can be connected with other large vessel (e.g. A1 vessel)

Experiments	 experiments on turbulent combustion in uniform and nonuniform gas mixtures at different initial pressure; 		
	 effect of obstacles and multi-compartment (room connections with different volumes) on flame acceleration and DDT; 		
	 effect of venting and pre-compression in connecting rooms on flame propagation regime; 		
	- experiments on hydrogen distribution in closed volume		
Level of detail	integral		
Instrumentation	gas temperature pressure gas composition hydrogen distribution velocity	thermocouples piezoelectric, piezoresistive mass spectrometer, gas flow control sonic hydrogen sensors photodiodes, ion probes	

Schedule	 preparatory work of experimental set-up to specific test series requires one month; 1 – 2 days are needed for preparation and conduction of one experiment in the series; 1 day is needed for processing of raw experimental data
Tools	standard software required for data acquisition system to convert analogous signals to digital form (ASCII or binary format)

Further particulars -

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

3-4 persons are needed to prepare/conduct experiments

What kind of movable equipment is available and could be shared?

Data acquisition system processed by accompanying service team (1-2 persons)

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

Experiments on hydrogen distribution and hydrogen stratification effect on flame propagation.

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Large or full scale experiments on turbulent combustion and detonation, experiments under elevated pressures and extremely high pressure load, hydrogen distribution in closed volume.

Which additional equipment could enhance the results of your experiments?

Overview		
Name	A6 Vessel	
Туре	cylindrical vessel	
Scale	large scale	
Experiments	studies on turbulent combustion and detonations, vented explosions, hydrogen distribution, integrity of me	echanical structures under high pressure load

distribution, integrity of mechanical structures under high pressure load

Technical details

Dimensions	21.5 m³ vessel, internal diameter 3.3 m, height 3.1 m
Temperatures	ambient
Pressure	up to 40 bar of static pressure
Media	hydrogen, air, nitrogen, oxygen
Special features	large scale; licensed high static pressure 40 bar, multiple entries possible
Further particulars	vessel has two vents of 800mm in diameter; gas filling system; data acquisition system; spark/glow plug for mixture ignition

Experiments	 experiments on turbulent combustion in uniform and nonuniform gas mixtures at different initial pressure; effect of venting and pre-compression in connecting rooms on flame propagation regime; 	
	 experiments on hydrogen distribution in closed volume; 	
	- integrity of mechanical structures under detonation pressu	
Level of detail	integral	
Instrumentation	gas temperature pressure gas composition	thermocouples piezoelectric, piezoresistive gauges mass spectrometer, gas flow control

HySafe – Safety of Hydrogen as an Energy Carrier

	velocity deformations	photodiodes, ion probes strain gauges
Schedule	one month; 1 day is needed for prep the series;	erimental set-up to specific test series requires paration and conduction of one experiment in cessing of raw experimental data
Tools		red for data acquisition system to convert gital form (ASCII or binary format)

Further particulars -

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

2-3 persons are needed to prepare/conduct experiments

What kind of movable equipment is available and could be shared?

Data acquisition system processed by accompanying service team (1-2 persons)

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

Experiments on integrity of mechanical structures under detonation pressure load could be done using A6 vessel as protection against missiles.

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Large scale experiments on turbulent combustion and detonation, experiments under elevated pressures and extremely high pressure load, hydrogen distribution in closed volume.

Which additional equipment could enhance the results of your experiments?

Name	A8 Vessel

- Type cylindrical vessel
- Scale large and medium scale

Experiments studies on gas combustion and detonations, vented explosions,

hydraulic and pneumatic equipment explosions, integrity and fracture of mechanical structures under high pressure load, blast vessels

Technical details

Dimensions	8.8 <i>m³</i> vessel, internal diameter 1.8 <i>m</i> , length 3.7 <i>m</i>
Temperatures	ambient
Pressure	up to 120 bar of static pressure
Media	hydrogen, hydrocarbons, air, inert gases, pressurized gases themselves.
Special features	large or medium scale; licensed static pressure limit 120 bar; multiple entries possible
Further particulars	several vents up to 300 mm in diameter; 8 glass windows for visual observations Ø150 mm; removable flange with opening of 1.8 m in diameter

Experiments	 experiments on turbulent combustion in uniform and nonuniform gas mixtures at different initial pressures ; jet initiation of detonation; blast vessels; exploding pipes, valves; bursting membranes
Level of detail	integral

Instrumentation	gas temperature pressure gas composition velocity deformations, fracture	<i>thermocouples piezoelectric, piezoresistive transducers mass spectrometer, gas flow control; photodiodes, ion probes strain gauges, high speed camera</i>
Schedule	preparatory work of experimental set-up to specific test series requires one month; 1 – 2 days are needed for preparation and conduction of one experiment in the series; 1 day is needed for processing of raw experimental data	
Tools	standard software (LabView) required for data acquisition system to convert analogous signals to digital ones (ASCII or binary format)	
Further particulars		

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

2-3 persons are needed to prepare/conduct experiments

What kind of movable equipment is available and could be shared?

Data acquisition system processed by accompanying service team (1-2 persons)

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

Experiments on integrity and/or fracture of gas equipment (piping, valves, and membranes) either pressurized or under detonation pressure load could be done using A8 vessel as secure shell against missiles.

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Large and medium scale experiments on turbulent combustion and detonation, experiments under elevated pressures and extremely high pressure load, testing of high pressure equipment.

What more/better results could you obtain if you had additional equipment?

Name	12 m detonation tube (DT)
Туре	cylindrical tube
Scale	medium scale
Experiments	studies on turbulent combustion, DDT and steady state detonations, heat transfer, ignition, flame p

ransfer, ignition, flame propagation regimes, chemical kinetic.

Technical details

Dimensions	internal diameter 350 mm, length 12 m
Temperatures	ambient
Pressure	up to 100 bar of static pressure
Media	hydrogen, air, nitrogen, oxygen
Special features	medium scale
Further particulars	tube could be filled with regular ring shape obstacles grid spaced by tube diameter, blockage ratio BR = 0.3, 0.45, 0.6, 0.75, 0.9; tube is equipped with gas filling system and data acquisition system, spark/glow plug for ignition

Experiments	 experiments on turbulent combustion in uniform and nonuniform gas mixtures at different initial pressure; experiments on flame acceleration, DDT and flammability limits; hydrogen distribution in closed volume 	
Level of detail	microscopic to integral	
Instrumentation	gas temperature pressure gas composition velocity	thermocouples piezoelectric, piezoresistive gauges mass spectrometer, gas flow control photodiodes, ion probes
Schedule	preparatory work of experimental set-up to specific test series requires one week; 3 – 4 hours are needed for preparation and conduction of one	

experiment in the series; 1 day is needed for processing of raw experimental data

Tools

standard software required for data acquisition system to convert analogous signals to digital form (ASCII or binary format)

Further particulars

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

2-3 persons are needed to prepare/conduct experiments

What kind of movable equipment is available and could be shared?

Data acquisition system processed by accompanying service team (1-2 persons)

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

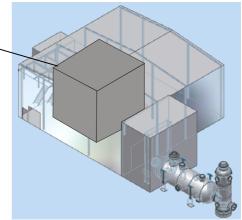
Experiments on chemical kinetic and heat transfer.

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Medium scale experiments on turbulent combustion and detonation, experiments under elevated and reduced pressures, experiment on ignition and flame propagation limits.

Which additional equipment could enhance the results of your experiments?


Name

Type rectangular chamber

Scale full or large scale

Experiments studies on vented combustion and detonations (up to 16g of hydrogen); hydrogen distribution, testing of ventilation system; testing of automotive hydrogen engines

Flow Test Chamber (TC)

Technical details

Dimensions	160 m³ chamber, dimensions 8.53x5.5x3.3 m
Temperatures	ambient
Pressure	ambient
Media	hydrogen, air
Special features	full/large scale
Further particulars	chamber equipped with ventilation system with variable exchange rate; possibility of hydrogen inlet with controlled flow rate; hydrogen engines can be tested inside of test chamber

Experiments	- experiments on vented combustion and detonations; - experiments on hydrogen distribution in closed volume - experiments on shock wave load under combustion and detonation	
Level of detail	integral (macroscopic)	
Instrumentation	gas temperature pressure gas composition hydrogen distribution velocity deformations	thermocouples piezoelectric, piezoresistive gauges mass spectrometer, gas flow control sonic hydrogen sensors photodiodes, ion probes, visual observations with high speed CCD camera strain gauges, displacement sensors (laser, mechanical and visual)

Schedule	 preparatory work of experimental set-up to specific test series requires one month; 1 – 2 days are needed for preparation and conduction of one experiment in the series; 1 day is needed for processing of raw experimental data
Tools	standard software required for data acquisition system to convert analogous signals to digital form (ASCII or binary format)

Further particulars -

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

3-4 persons are needed to prepare/conduct experiments

What kind of movable equipment is available and could be shared?

Data acquisition system processed by accompanying service team (1-2 persons)

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

Experiments on vented combustion and detonation could be done using test chamber as protection against shock wave and thermal load.

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Large and full scale experiments on hydrogen distribution in big closed volume, vented combustion and detonation (up to 16 g of hydrogen)

Which additional equipment could enhance the results of your experiments?

TT BILL

Overview

Name	Partially Vented Explosion Tube PET	
Туре	cylindrical tube with variable opening	
Scale	medium scale	
Experiments	studies on vented explosi acceleration and DDT; jet	ons, turbulent flame propagation, flame initiation of detonation

Technical details Dimensions	55 dm ³ vessel, internal diameter 0.1 m, length 7 m
Temperatures	ambient
Pressure	ambient
Media	hydrogen, air, nitrogen, oxygen
Special features	medium scale; controlled venting degree
Further particulars	tube could be filled with regular ring shape obstacles grid spaced by tube diameter, blockage ratio BR = 0.3, 0.6; variable transverse venting ratio (opening rate) from 0 to 40% tube is equipped with gas filling system and data acquisition system, spark/glow plug for ignition; PEV has possibility to make combustible surrounding atmosphere with thin polyethylene film around of the tube.

Experiments – Equipment

Experiments	 vented combustion in uniform and nonuniform gas mixtures; flame acceleration and DDT under transverse venting conditions. 	
Level of detail	integral	
Instrumentation	gas temperature pressure gas composition velocity	thermocouples piezoelectric, piezoresistive gauges mass spectrometer, gas flow control photodiodes, ion probes, visual observation with high speed CCD camera.

Schedule	 preparatory work of experimental set-up to specific test series requires one week; 3 – 4 hours are needed for preparation and conduction of one experiment in the series; 1 day is needed for processing of raw experimental data
Tools	standard software required for data acquisition system to convert analogous signals to digital form (ASCII or binary format)

Further particulars -

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

2-3 persons are needed to prepare/conduct experiments.

What kind of movable equipment is available and could be shared?

Experimental facility and data acquisition system processed by accompanying service team (2-3 persons)

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

Experiments on transient regimes of DDT at various degree of venting: from fully confined to unconfined gas mixture.

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Small scale experiments on turbulent combustion and DDT under transverse venting conditions.

Which additional equipment could enhance the results of your experiments?

-

Overview

Name	Explosion bomb	6900
Туре	spherical vessel	
Scale	laboratory scale (8.2 dm ³)	
Experiments	flammability limits, minimum ignition of chemical kinetics, flame structure	

Technical details

Dimensions	8.2 dm³ vessel, internal diameter 25 cm, wall thickness >34 mm
Temperatures	20 – 300 °C
Pressure	up to 800 bar of static pressure
Media	hydrogen, hydrocarbons, oxygen, air, steam, inert gases
Special features	laboratory scale; licensed static pressure limit 800 bar; quartz windows for optical observations
Further particulars	2 quartz windows for optical observations Ø50 mm; blind flanges instead of windows

Experiments	 experiments on flammability limits at elevated initial pressures and temperatures; minimum ignition energy at elevated initial pressures and temperatures; laminar flame velocity at elevated initial pressures and temperatures 	
Level of detail	integral	
Instrumentation	gas temperature pressure gas composition velocity	thermocouples piezoelectric, piezoresistive transducers mass spectrometer, gas flow control; high speed schlieren cinematography

Schedule	preparatory work of experimental set-up to specific test series requires one month; 1–3 hours are needed for preparation and conduction of one experiment in the series (depending on an initial pressure); 1-2 days are needed for processing of raw experimental data
Tools	standard software (LabView) required for data acquisition system to convert analogous signals to digital ones (ASCII or binary format)

Further particulars -

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

1-2 persons are needed to prepare/conduct experiments

What kind of movable equipment is available and could be shared?

Data acquisition system processed by accompanying service team (1-2 persons)

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

Experiments on self ignition temperature, experiments on turbulent flames, and experiments on chemical kinetics and minimum ignition energy.

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

What more/better results could you obtain if you had additional equipment?

Detailed flame structure using laser techniques and high speed photo.

Name	HyJet	
Туре	horizontal/vertical hydrogen jet	M
Scale	small and medium scale (up to 3 m)	-
Experiments	studies on hydrogen release from pressurized vessel, dynamic hydrogen c	oncentrati

vessel, dynamic hydrogen concentrations and flow velocity profiles, investigations on flammability of the turbulent hydrogen jet.

Technical details

Dimensions	0.16, 1, 5, 10 mm nozzle diameter, up to 10 g/s hydrogen mass flow (stationary) or up to 100 g/s (maximum, temporary)
Temperatures	from cryogenic (20K) to ambient
Pressure	up to 260 bar
Media	pressurized hydrogen, air, inert gases, heterogeneous cryogenic gas release.
Special features	small or medium scale; sub- or supersonic flow velocity, buoyant jet,
Further particulars	jet interactions with obstacles grid, barriers, hood and so on.

Experiments	 spatial and temporal hydrogen and velocity distribution in a jet; vertical and horizontal free jets; jet interaction with obstacles and barriers; subsonic and supersonic jets, buoyant jets ignition, combustion and explosion of hydrogen jets; steady-state and non steady-state jets
Level of detail	integral

Instrumentation	gas temperature pressure heat radiation gas composition	thermocouples, infrared camera piezoelectric, piezoresistive transducers infrared camera, heat flux sensors mass spectrometer, ultrasonic Doppler velocimetry; Background Oriented Schlieren (BOS) method
	velocity	ultrasonic Doppler velocimetry; BOS method high speed camera
	noise level	microphone, piezoelectric sensors
Schedule	preparatory work of experimental set-up to specific test series requires 2 weeks; 1 – 2 hours are needed for preparation and conduction of one experiment in the series; 1-2 days are needed for processing of raw experimental data	
Tools	standard software (LabView) required for data acquisition system to convert analogous signals to digital ones (ASCII or binary format)	
Further particulars		

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

2-3 persons are needed to prepare/conduct experiments

What kind of movable equipment is available and could be shared?

Data acquisition system processed by accompanying service team (1-2 persons)

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

Hydrogen and velocity distribution in a hydrogen jet using laser techniques (Mie and Rayleigh scattering, LDV)

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Critical conditions for ignition, combustion and explosion of hydrogen jets.

What more/better results could you obtain if you had additional equipment?

Partner: GexCon

- Facilities: 168 m³ open geometry with internal obstructions
 - 1:3.2 scale offshore module
 - Connected vessels
 - 6m channel
 - 50m³ tube
 - 1.2 m³ closed vessel
 - 216 litre dispersion vessel
 - 20 litre spray vessel
 - 1.4 m channel
 - 3D corner

Name	GexCon 168 m ³ open geometry with internal obstructions
Туре	explosion vessel
Scale	large scale (168 m³)
Experiments	studies on explosions in open, congested geometries

Technical details

Dimensions	168 <i>m</i> ³ vessel, 12 <i>m</i> long, 4 <i>m</i> wide and 3.5 <i>m</i> high
Temperatures	normal outdoor temperatures
Pressure	tests at normal pressure.
Media	gas explosions hydrogen/air
Special	variable geometry congestion. Obstructed volume 9x3x3 m (81 m ³). Will be suitable for explosion tests using homogeneous hydrogen gas clouds with limited gas concentration or for non-homogeneous (leak- generated) gas mixtures. Potential for detonations but ability to handle them is somewhat uncertain. Explosion mitigation experiments and simulation validation for complex, congested but open geometries
Description	A simple frame system is covered with light plastic sheeting prior to gas filling. This sheet is clamped in place and is released just prior to ignition.

Experiments - Equipment

Experiments	Test configuration is set up in terms of internal geometry and congestion. The vessel is equipped with measuring devices and instrumentation for explosion pressure and flame speed measurement etc. After covering the frame with plastic foil, gas is introduced into the vessel either by a high-pressure release or by mixing using a recirculation system (to obtain homogenous mixtures). The gas cloud is then ignited and the ensuing explosion monitored.
Instrumentation	Gas concentration (O_2)
	Explosion pressure (piezoelectric/piezoresistive)
	Dynamic pressure component
	External blast pressures

Descriptions of experimental facilities 108/329

HvSafe –	Safety of	^c Hvdrogen as an	Energy Carrier
11 youye	Sujery Oj	iiyarogen as an	Liter Sy Currier

	Flame velocity
	Video (normal and high speed)
Schedule	Preparation:1-3 weeks depending on experimental content
	Conduction: depending on experimental content,(typical 2-3 tests/day)
	Interpretation of experiments/reporting: 2-3 weeks depending on content
Tools	NI-LabView, MS-Excel, MS-Word

- To prepare exchange of instruments and personnel
 - 3-4 persons are needed to prepare/conduct experiments

equipment that is available and could be shared is primarily limited to instrumentation and data logging equipment

• To prepare filling possible gaps

_

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Which additional equipment could enhance the results of your experiments? Gas composition/concentration (H_2)

Name	GexCon 1:3.2 scale offshore module	
Туре	explosion vessel	
Scale	large scale (50 m³)	
Experiments	studies on vented expl	osions in realistic geometries

Technical details

Dimensions	50 <i>m</i> ³ vessel, 8 <i>m</i> long, 2.5x2.5 <i>m</i> cross section
Temperatures	normal outdoor temperatures
Pressure	tests at normal pressure. Explosion pressures up to 3 barg
Media	gas explosions hydrogen/air, hybrid gas/oil mist explosions
Special	realistic and variable geometry. Vented explosions, variable vent area. Transparent front wall to allow optical access.
Description:	Will be suitable for explosion tests using homogeneous hydrogen gas clouds with limited gas concentration or for non-homogeneous (leak- generated) gas mixtures due to maximum pressure limitations. Explosion mitigation experiments and simulation validation for realistic geometries

Experiments	Test configuration is set up in terms of internal geometry and vent openings. The module is equipped with measuring devices and instrumentation for explosion pressure measurement etc. After covering the vent openings with plastic foil, gas is introduced into the vessel either by a high-pressure release or by mixing using a recirculation system (to obtain homogenous mixtures). The gas cloud is then ignited and the ensuing explosion monitored.
Instrumentation	Gas concentration (O ₂)
	Explosion pressure (piezoelectric/piezoresistive)
	Dynamic pressure component
	External blast pressures
	Flame velocity
	Video (normal and high speed)

HySafe – Safety of Hydrogen as an Energy Carrier

Schedule	Preparation:1-3 weeks depending on experimental content
	Conduction: depending on experimental content,(typical 2-3 tests/day)
	Interpretation of experiments/reporting: 2-3 weeks depending on content
Tools	NI-LabView, MS-Excel, MS-Word

Information for the preparation of integration

• To prepare exchange of instruments and personnel

2-3 persons are needed to prepare/conduct experiments equipment that is available and could be shared is primarily limited to instrumentation and data logging equipment

• To prepare filling possible gaps

Hydrogen dispersion experiments could be performed in this facility by applying additional instrumentation for hydrogen concentration measurements in real time

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Which additional equipment could enhance the results of your experiments?

Gas composition/concentration (H₂)

Turbulence measurements

Structural response

Website presentation

Additional material to be presented on the HySafe Website

Videos of release of hydrogen and transformer oil (used in a safety study for transformers) can be provided to web-site.

Name	GexCon connected vessels
Туре	explosion vessel
Scale	small scale (100 litre)
Experiments	studies on explosions in vented vessel

Technical details

Dimensions	100 litre vessel, 2 m long, ~0.3 m in diameter
Temperatures	normal temperatures
Pressure	tests at normal pressure.
Media	gas explosions hydrogen/air
Special	variable internal configurations used to test explosion propagation ability through small orifices and pressure piling effects. Will be suitable for explosion tests using homogeneous hydrogen gas clouds.
Description:	Internal orifice plate is inserted between flanges to investigate pressure piling effects and flame travel through small openings.

Experiments	Test configuration is set up in terms of orifice configuration. The vessel is equipped with measuring devices and instrumentation for explosion pressure etc. After covering the vent with plastic foil, gas is introduced into the vessel by mixing using a flushing/recirculation system (to obtain homogenous mixtures). The gas cloud is then ignited and the ensuing explosion monitored.
Instrumentation	Gas concentration (O ₂)
	Explosion pressure (piezoelectric/piezoresistive)
Schedule	Preparation: 1 week depending on experimental content
	Conduction: depending on experimental content,(typical 5-6 tests/day)
	Interpretation of experiments/reporting: 2-3 weeks depending on content
Tools	NI-LabView, MS-Excel, MS-Word

- To prepare exchange of instruments and personnel
 - 1 person is needed to prepare/conduct experiments

equipment that is available and could be shared is primarily limited to instrumentation and data logging equipment

• To prepare filling possible gaps

_

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Which additional equipment could enhance the results of your experiments? Gas composition/concentration (H_2)

Name	GexCon 6m channel
Туре	explosion vessel
Scale	large scale (9 m³)
Experiments	studies on vented explosions in idealised geometries

Technical details

Dimensions	9 <i>m</i> ³ vessel, 6 <i>m</i> long,1.25x1.25 <i>m</i> cross section
Temperatures	normal outdoor temperatures
Pressure	tests at normal pressure. Explosion pressures up to 5 barg (>5 if steel roof)
Media	gas explosions hydrogen/air, hybrid gas/oil mist explosions
Special	idealised and variable geometry. Vented explosions, variable vent area. Transparent roof to allow optical access.
Description:	Will be suitable for explosion tests using homogeneous hydrogen gas clouds with limited gas concentration or for non-homogeneous (leak- generated) gas mixtures due to maximum pressure limitations. Explosion mitigation experiments and simulation validation for idealised geometries. Obstruction baffles of various heights can be inserted at 1m intervals on both sides of the vessel. 3 baffle sizes are available.

Experiments	Test configuration is set up in terms of internal geometry and vent opening. The vessel is equipped with measuring devices and instrumentation for explosion pressure measurement etc. After covering the vent opening with plastic foil, gas is introduced into the vessel either by a high-pressure release or by mixing using a recirculation system (to obtain homogenous mixtures). The gas cloud is then ignited and the ensuing explosion monitored.
Instrumentation	Gas concentration (O ₂)
	Explosion pressure (piezoelectric/piezoresistive)
	Dynamic pressure component
	External blast pressures

HySafe	Safaty of	of Hydroge	n as an	Enerov	Carrier
11ysuje –	Sujery 0	ij Hyuroge	n us un	Lnergy	Currier

	Flame velocity
	Video (normal and high speed)
Schedule	Preparation: 1-3 weeks depending on experimental content
	Conduction: depending on experimental content,(typical 2-3 tests/day)
	Interpretation of experiments/reporting: 2-3 weeks depending on content
Tools	NI-LabView, MS-Excel, MS-Word

• To prepare exchange of instruments and personnel

2-3 persons are needed to prepare/conduct experiments equipment that is available and could be shared is primarily limited to instrumentation and data logging equipment

• To prepare filling possible gaps

Hydrogen dispersion experiments could be performed in this facility by applying additional instrumentation for hydrogen concentration measurements in real time

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Which additional equipment could enhance the results of your experiments?

Gas composition/concentration (H₂)

Turbulence measurements

Structural response and explosion loading

Name	GexCon 50 m ³ tube	
Туре	explosion vessel	HIPPIN
Scale	large scale (50 m³)	
Experiments	studies on dispersion/	/explosions in closed/vented vessel (tunnels)

Technical details	50 m³ vessel, 10 m long, 2.5 m in diameter
Bintonolonio	
Temperatures	normal outdoor temperatures
Pressure	tests at normal pressure. High pressures/detonations possible
Media	gas explosions hydrogen/air
Special	variable internal congestion. Will be suitable for explosion tests using homogeneous hydrogen gas clouds. Potential for detonations. Explosion mitigation experiments and simulation validation for idealised geometry.
Description:	Internal circumferential rings are inserted to investigate turbulence- generation. Vented explosion normally performed.

Experiments - Equipment

Overview

Experiments	Test configuration is set up in terms of internal geometry. The vessel is equipped with measuring devices and instrumentation for explosion pressure and flame speed measurement etc. After covering the vent with plastic foil, gas is introduced into the vessel by mixing using a recirculation system (to obtain homogenous mixtures). The gas cloud is then ignited and the ensuing explosion monitored.
Instrumentation	Gas concentration (O ₂)
	Explosion pressure (piezoelectric/piezoresistive)
	Dynamic pressure component
	External blast pressures
	Flame velocity
	Video (normal and high speed)
Schedule	Preparation:4-5 weeks depending on experimental content

HySafe – Safety of Hydrogen as an Energy Carrier

Conduction: depending on experimental content,(typical 2-3 tests/day) Interpretation of experiments/reporting: 2-3 weeks depending on content NI-LabView, MS-Excel, MS-Word

Information for the preparation of integration

Tools

• To prepare exchange of instruments and personnel

3-4 persons are needed to prepare/conduct experiments equipment that is available and could be shared is primarily limited to instrumentation and data logging equipment

• To prepare filling possible gaps

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Which additional equipment could enhance the results of your experiments? Gas composition/concentration (H_2)

Name	GexCon 1.2 m ³ closed vessel
Туре	explosion vessel
Scale	small scale (1.2 m³)
Experiments	studies on explosions in closed vessel

Technical details

Dimensions	1.2 m ³ cylindrical vessel

- Temperatures normal temperatures
- Pressure tests at normal pressure.
- Media gas explosions hydrogen/air
- Special Will be suitable for explosion tests using homogeneous hydrogen gas clouds to test combustion characteristics and mitigation techniques.
- Description: A closed cylindrical vessel with L/D ~2. Several inlets allow for variable ignition location and instrumentation layouts.

Experiments	The vessel is equipped with measuring devices and instrumentation for explosion pressure etc. Gas is introduced into the vessel by mixing using a recirculation system (to obtain homogenous mixtures). The gas cloud is then ignited and the ensuing explosion monitored. Effect of sprays and/or other mitigation materials can be investigated.
Instrumentation	Gas concentration (O ₂)
	Explosion pressure (piezoelectric/piezoresistive)
Schedule	Preparation:1 week depending on experimental content
	Conduction: depending on experimental content, (typical 2-3 tests/day)
	Interpretation of experiments/reporting: 2-3 weeks depending on content
Tools	NI-LabView, MS-Excel, MS-Word

- To prepare exchange of instruments and personnel
 - 1 person is needed to prepare/conduct experiments

equipment that is available and could be shared is primarily limited to instrumentation and data logging equipment

• To prepare filling possible gaps

_

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Which additional equipment could enhance the results of your experiments? Gas composition/concentration (H_2)

Name	GexCon 216 litre dispersion vessel
Туре	gas dispersion/explosion vessel
Scale	small scale (216 litre)
Experiments	studies on gas dispersion/homogeneity

Technical details

Dimensions	216 litre rectangular vessel, 1.2x0.9x0.2 m, possibility to mount partition walls
Temperatures	normal temperatures
Pressure	tests at normal pressure.
Media	gas dispersion of hydrogen
Special	Will be suitable for gas release & dispersion tests using hydrogen gas. Explosions for non-ideal (poorly mixed) clouds may be possible despite pressure tolerance limitations of vessel.
Description:	A semi-closed rectangular vessel designed for gas release and dispersion tests within idealised geometries. Internal layout can be varied by use of movable baffle plates. Real-time gas concentration measurements are performed to monitor gas dispersion processes for hydrogen. Gas mixtures are also allowed.

Experiments	The vessel is equipped with measuring devices and instrumentation for gas release monitoring and gas concentration measurements etc. Gas is introduced into the vessel via a high-pressure release. The effect of release type and characteristics and vessel geometry can be investigated.
Instrumentation	Gas release pressure / flowrate
	Gas concentration (H₂/O₂)
Schedule	Preparation:1 week depending on experimental content
	Conduction: depending on experimental content,(typical 8-10 tests/day)
	Interpretation of experiments/reporting: 2-3 weeks depending on content

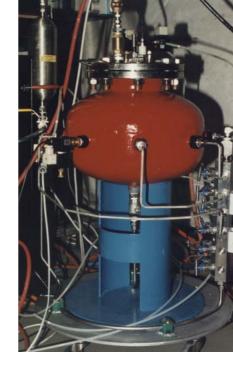
Tools NI-LabView, MS-Excel, MS-Word

Information for the preparation of integration

- To prepare exchange of instruments and personnel 1 person is needed to prepare/conduct experiments equipment that is available and could be shared is limited
- To prepare filling possible gaps
- To prepare promotion and specialisation

What features/possibilities would you like to promote?

Which additional equipment could enhance the results of your experiments?


A greater number of more accurate gas composition/concentration sensors for H_2 would improve the results obtainable.

Name	GexCon 20-litre spray vessel
Туре	explosion vessel
Scale	small scale (20 litre)
Experiments	studies on explosions in closed vessel

Technical details

Dimensions	20 litre vessel, ~ semi-spherical	
Temperatures	normal temperatures	
Pressure	tests at normal pressure	
Media	gas explosions hydrogen/air	
Special	Will be suitable for explosion tests using homogeneous hydrogen gas clouds to test combustion characteristics and mitigation techniques using sprays.	
Description	approximately spherical vessel with 8-10 spray inlets for water and/or other liquids. Central ignition and pressure measurement allows determination of burning velocity characteristics etc.	

Experiments	The vessel is equipped with measuring devices and instrumentation for explosion pressure etc. Gas is introduced into the vessel by mixing using a flushing system (to obtain homogenous mixtures). The gas cloud is then ignited and the ensuing explosion monitored. Effect of sprays and mitigation liquids can be investigated.
Instrumentation	Gas concentration (O ₂)
	Explosion pressure (piezoelectric/piezoresistive)
Schedule	Preparation:1 week depending on experimental content
	Conduction: depending on experimental content, (typical 5-6 tests/day)
	Interpretation of experiments/reporting: 2-3 weeks depending on content
Tools	NI-LabView, MS-Excel, MS-Word

• To prepare exchange of instruments and personnel

1 person is needed to prepare/conduct experiments

equipment that is available and could be shared is primarily limited to instrumentation and data logging equipment

• To prepare filling possible gaps


-

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Which additional equipment could enhance the results of your experiments? Gas composition/concentration (H_2)

Overview		
Name	GexCon 1.4m channel	
Туре	explosion vessel	
Scale	small scale (130 litre)	
Experiments	studies on vented explosions in idealised geometries	

Technical details

Dimensions	130 litre vessel, 1.44 m long,0.3x0.3 m cross section		
Temperatures	normal temperatures		
Pressure	tests at normal pressure. Explosion pressures up to ~3 barg		
Media	gas explosions hydrogen/air or gas mixtures		
Special	idealised and variable geometry. Vented explosions, variable vent area. Transparent front wall to allow optical access.		
Description:	Obstruction baffles of various heights can be inserted at 0.24m intervals of the vessel. 3 baffle sizes are available (5, 10 & 15 cm). Vessel will only be suitable for explosion tests using homogeneous hydrogen gas clouds with limited gas concentration or for non- homogeneous (leak-generated) gas mixtures for the more complex obstacle configurations due to maximum pressure limitations. Ideal mixtures will be possible for the simpler geometries. Explosion mitigation experiments and simulation validation tests for idealised geometries are among the possibilities for this test vessel.		

Experiments - Equipment

Experiments
 Test configuration is set up in terms of internal geometry and vent opening. The vessel is equipped with measuring devices and instrumentation for explosion pressure measurement etc. After covering the vent opening with plastic foil, gas is introduced into the vessel either by a high-pressure release or by mixing using a recirculation system (to obtain homogenous mixtures). The gas cloud is then ignited and the ensuing explosion monitored.
 Instrumentation
 Gas concentration (O₂)
 Explosion pressure (piezoelectric/piezoresistive)

Dynamic pressure component

HySafe – Safety of Hydrogen as an Energy Carrier

	External blast pressures
	Flame velocity
	Video (normal and high speed)
Schedule	Preparation: 2-3 days depending on experimental content
	Conduction: depending on experimental content, (typical 5-6 tests/day)
	Interpretation of experiments/reporting: 2-3 weeks depending on content
Tools	NI-LabView, MS-Excel, MS-Word

Information for the preparation of integration

• To prepare exchange of instruments and personnel

1 person is needed to prepare/conduct experiments

equipment that is available and could be shared is primarily limited to instrumentation and data logging equipment

• To prepare filling possible gaps

Hydrogen dispersion experiments could be performed in this facility by applying additional instrumentation for hydrogen concentration measurements in real time

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Which additional equipment could enhance the results of your experiments?

Gas composition/concentration (H₂)

Turbulence measurements

Structural response and explosion loading

• Website presentation

Additional material to be presented on the HySafe Website We can make available a couple of photos from tests

Name	GexCon 3D corner
Туре	explosion vessel
Scale	small/large scale (50 litre / 27 m³)
Experiments	studies on vented explosions in complex idealised geometries

Technical details

Dimensions	50 litre vessel (0.37x0.37x0.37 m) or 27 <i>m</i> ³ vessel, 3x3x3 m Pipe arrays of different diameter and pitch giving volume blockage from 0.1 to 0.5	
Temperatures	normal temperatures	
Pressure	tests at normal pressure	
Media	gas explosions hydrogen/air	
Special	idealised and variable geometry. Vented explosions in idealised geometry	
Description:	Will be suitable for explosion tests using homogeneous hydrogen gas clouds. Obstruction "pipe sets" of various types (number and size) can be inserted. Area and volume blockage ratio can thus be varied.	

Experiments	Test configuration is set up in terms of internal geometry. The vessel is equipped with measuring devices and instrumentation for explosion pressure measurement etc. After covering the rig with plastic foil, gas is introduced into the vessel by mixing using a recirculation system (to obtain homogenous mixtures). The gas cloud is then ignited and the ensuing explosion monitored.
Instrumentation	Gas concentration (O ₂)
	Explosion pressure (piezoelectric/piezoresistive)
	External blast pressures
	Video (normal and high speed)
Schedule	Preparation: 1-3 weeks depending on scale and experimental content
	Conduction: depending on scale (typical 5-6 tests/day small scale, 2-3 tests/day large scale)

HySafe – Safety of Hydrogen as an Energy Carrier

Interpretation of experiments/reporting: 2-3 weeks depending on content

Tools NI-LabView, MS-Excel, MS-Word

Information for the preparation of integration

• To prepare exchange of instruments and personnel

1 person is needed to prepare/conduct small scale experiments. 2-3 persons are needed to prepare/conduct large scale experiments. equipment that is available and could be shared is primarily limited to instrumentation and data logging equipment

• To prepare filling possible gaps

• To prepare promotion and specialisation

Which additional equipment could enhance the results of your experiments?

Gas composition/concentration (H₂)

Partner: HSE/HSL

Health & Safety Laboratory

An Agency of the Health & Safety Executive

- Facilities: Ventilated dispersion and explosion facility
 - Gas dispersion facility
 - Under water gas release and explosion facility
 - Jet fire facility
 - High pressure hydrogen facility
 - 366m gallery/tunnel
 - Frictional ignition apparatus
 - 75 mm gas gun
 - 190 mm gas gun
 - Impact test track
 - Drop Tower 3.3 m
 - Drop Tower 25 m

Name	Ventilated dispersion and explosion facility
Туре	Modular Vented enclosure with integrated ventilation system
Scale	Full scale tests of gas releases into a controlled ventilation flow
Experiments	e.g. studies on vented explosions, tank testing,

Technical details

Dimensions	Enclosure with internal dimensions of 2.5 m x 2.5 m x15 m. Modular construction to vary length up to 15 m.	
Temperatures	Ambient temperature – outdoor facility	
Pressure	<i>Vented structure with up to 2 bar overpressure maximum operating pressure 150 bar</i>	
Media	Hydrogen or other gases	
Special features Ventilation system capable of 2500 m ³ s ⁻¹ Different ventilation configurations multiple entries possible		

Experiments	Characterisation of hydrogen release, ignited and un-ignited into a controlled ventilation flow. Study effects of leak size, ventilation, congestion, vent area etc. on dispersion and overpressure	
Level of detail	High using large thermocouple and transducer arrays.	
Instrumentation	gas temperature pressure gas concentration flame size logging	thermocouples pressure transducers oxygen concentration cells thermal imaging camera up to 100 kHz
Schedule	time needed for: preparation (2 weeks), conduction (2 tests per day), interpretation of experiments(2 weeks)	
Tools	Microlink, FAMOS software, Excel Software	

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

3

What kind of movable equipment is available and could be shared?

None

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

High pressure and liquid releases into ventilated flows.

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Adaptation of apparatus for different types of release.

Which additional equipment could enhance the results of your experiments? *Effects of ventilation on different types of release.*

Name	Gas dispersion facility
Туре	Flat area suitable for characterising gas dispersion
Scale	Full scale tests, with flashing liquid releases up to 5 kgs ⁻¹ or gaseous releases
Experiments	Study of dispersion of flashing liquid or gas – mainly used with LPG, but could be used with H ₂

Technical details

Dimensions	> 100m wide x 200 m long
Temperatures	Ambient temperature
Pressure	Local storage pressure
Media	Hydrogen (LH2 and CGH2), LPG
Special features	Fully instrumented release and dispersion facility

Experiments	Characterisation of clou Characterisation of sour Ignition of released gas	,
Instrumentation	gas temperature pressure gas concentration flame size weather conditions logging	thermocouples pressure transducers oxygen concentration cells thermal imaging camera 3 x weather stations up to 100 kHz
Schedule	time needed for: preparation (2-3 weeks) conduction (3-4 weeks), interpretation of experim	
Tools	Excel Software, data log	gging equipment

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

4

What kind of movable equipment is available and could be shared? *None*

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

Releases of cryogenically stored fluids

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Dispersion of releases of liquefied hydrogen and pressurised releases. Which additional equipment could enhance the results of your experiments? Direct hydrogen concentration measurements with H₂ analysers.

Name	Under water gas release and explosion facility	
Туре	48 m³ enclosure	181
Scale	<i>Full scale tests of gas releases up to 800 litres</i>	0
Experiments	Studies of explosions in ullage spaces	

Technical details

Dimensions	Enclosure with internal dimensions of 4m x 4m x 3m.
Temperatures	Ambient temperature – outdoor facility
Pressure	Up to 1 bar over pressure
Media	Hydrogen or other gases
Special features	Ventilation system capable of 2900 m ³ hr ⁻¹ Different ventilation configurations multiple entries possible Windows for imaging

Experiments		nydrogen release, ignited and un-ignited into the ntrolled ventilation flow.
Instrumentation	gas temperature pressure gas concentration flame size logging	thermocouples pressure transducers oxygen concentration cells thermal imaging camera high speed video up to 100 kHz
Schedule	time needed for: preparation (2 weeks), conduction (2 tests per day), interpretation of experiments(2 weeks)	
Tools	Microlink, FAMOS so	oftware, Excel Software

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

3

What kind of movable equipment is available and could be shared?

None

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

• To prepare promotion and specialisation

What features/possibilities would you like to promote?
Adaptation of apparatus for different types of release.
Which additional equipment could enhance the results of your experiments?
Effects of ventilation on different types of release.

Name	Jet fire facility
Туре	LPG vapour jet fire facility
Scale	Full scale tests on samples and panels for up to 2 hour duration.
Experiments	Commercial testing of PFP material and components. Testing to Jet-Fire Resistance Test (JFRT) standards

Technical details

Dimensions	0.55 kg s ⁻¹ vapour, 10 kg s ⁻¹ liquid, LPG jet fire; 14 tonne LPG storage supply; 1000 l min ⁻¹ water deluge facility
Temperatures	Ambient temperature, Flame temperature ~1100 °C
Pressure	Local storage pressure , ~ 8 bar LPG
Media	LPG,
Special features	Commercial JFRT facility

Experiments	Characterisation of behaviour of PFP material and components Investigation of BLEVE behaviour of LPG storage cylinders (2 tonne)
Instrumentation	gas temperature thermocouples pressure pressure transducers fuel flow rate mass flow meters flame thermal imaging camera and video camera weather conditions weather stations
Schedule	time needed for: preparation (2 days), conduction (2 days per test), interpretation of experiments(1 day)
Tools	Excel Software, data logging equipment,

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

3 - 4

What kind of movable equipment is available and could be shared?

None – fixed facility

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

Investigation of behaviour of hydrogen storage tanks under jet-fire attack.

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Standard jet-fire resistance testing of samples and components. Could be used for H2 equipment.

Which additional equipment could enhance the results of your experiments?

Longer duration tests with more LPG storage.

Name	High pressure hydrogen facility
Туре	Gas supply compressor, reservoir and pipe work to enable pressurised releases
Scale	<i>Full scale tests, with releases up to 1000 bar, 9.5mm dia. release orifice ,</i>
Experiments	Study of ignited and unignited jet releases of hydrogen

Technical details

Dimensions	Release orifice up to 9.5 mm diameter, pressure up to 1000 bar
Temperatures	Ambient temperature
Pressure	1000 bar
Reservoir Volume	2 x 50 litres
Media	Hydrogen
Special features	Large scale release of ignited or unignited hydrogen at medium pressure

Experiments	Characterisation of hydrogen jet releases – gas concentration. Characterisation of hydrogen jet flames – size, visibility, temperature, etc. Study of spontaneous ignitions
Instrumentation	gas temperature thermocouples pressure pressure transducers gas concentration oxygen & hydrogen concentration cells flame size thermal imaging camera logging up to 100 kHz
Schedule	time needed for: preparation (3 weeks), conduction (4 weeks), interpretation of experiments(2 weeks)
Tools	Microlink, FAMOS software, Excel Software

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

Up to 8 (dependent on explosion severity)

What kind of movable equipment is available and could be shared?

None

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

Confined jet releases, releases with obstructions. Filling high pressure tanks etc.

To prepare promotion and specialisation

What features/possibilities would you like to promote?

Dispersion tests, obstructed releases (ignited and unignited) and experience of measuring over-pressures of ignition.

Spontaneous ignition studies.

Which additional equipment could enhance the results of your experiments?

Background Oriented Schlieren Imaging

Name	366m gallery/tunnel
Туре	Concrete test enclosure/tunnel
Scale	Full/large scale
Experiments	Combustion and ventilation controlled overpressures Fragmentation.

Technical details

Dimensions	Cross section = 5.6 m^2 (2.55 m to crown, 2.75 m maximum width) Length: 366 m
Temperatures	Up to 750°C in limited (20 m long) area. Up to 90°C overall.
Pressure	Atmospheric
Media	Air
Special features	Ventilation flow up to 5 m.s ⁻¹ throughout. Access for instrumentation every 3 m (25 mm diameter). Larger access ports every 25 m (0.3 m x 0.2 m)

Experiments	Fire effects on components at full-scale / reduced scales (previously used to validate codes for Channel Tunnel using 1/3 scale models) Small explosion tests. Effect of ventilation/wind on combustion / consequences
Instrumentation	Thermocouples (>100 have been used in single experiments) Heat flux (Gardon Gauges) Mass change (load cells) Air flows (hot wire / rotary vane / vortex shedding anemometry) Smoke detection Video/still image cameras
Schedule	Typical work at this scale would involve: Preparation for test programme: 10 days Testing: 1 to 4 tests per day Preliminary analysis of results (e.g. elimination of broken instruments): up to 4 tests per day. Full Analysis of results: 1 to 2 days per test. As facility is adaptable to a range of work, exact schedule would vary depending on specific details.
Tools	Microcal Origin, SPSS Sigmaplot, Microsoft Excel

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

What kind of movable equipment is available and could be shared? *Fixed facility available to other partners*

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

Hydrogen ventilation, fire and explosion in tunnels and mitigation

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Which additional equipment could enhance the results of your experiments? Full/large scale tunnel facility with extensive scope for instrumentation

Name	Frictional ignition apparatus
Туре	Ignition test facility with vented explosion vessel enclosure
Scale	Full scale test apparatus operating at up to 20 m/s, 5 kN loads in a 0.3 m ³ vented explosion vessel
Experiments	Studies into frictional rubbing events in flammable atmospheres

eriments Studies into frictional rubbing events in flammable atmospheres. Research into spark and hot surface ignition events.

Technical details

Dimensions	Apparatus laboratory based on 4m long lathe bed. Explosion vessel is 0.3m ³ volume. Driven disc 30 cm diameter maximum and 25mm cross section sacrificial slider.
Temperatures	Test carried out at ambient but scope for heating or cooling. Temperature measurement used to detect ignition. 50fps high resolution thermal imaging camera also used to measure surface temperatures.
Pressure	Vented system
Media	Explosive atmosphere mainly flammable gases, but vapours dusts and Hybrid mixtures. Friction materials include metals and ceramics.
Special features	Driven by 30kW variable speed induction motor. Frictional rubbing speeds up to 20m/s and loads up to 5kN. High speed video (40,000 fps) also available.

Experiments	Characterisation of ignition behaviour of hydrogen under different conditions. Factors include materials, operating conditions including state of H ₂ .	
Instrumentation	gas temperature pressure fuel concentration flame	thermocouples pressure transducers mass flow meters thermal imaging camera and video camera
Schedule	time needed for: preparation (2 days), conduction (2 hours per test), interpretation of experiments(0.5 day)	
Tools	Excel Software, Sigma	plot and data logging equipment

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

1 - 2

What kind of movable equipment is available and could be shared?

None – fixed facility

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

Investigation of ignition of H_2 by friction to establish optimum materials ect.

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Unique apparatus with direct application for H_2 equipment. Information essential as required by EU ATEX Directives

Which additional equipment could enhance the results of your experiments?

Adaptation of apparatus to investigate hydrogen as LH2.

HySafe – Safety of Hydrogen as an Energy Carrier

Overview

Name	75 mm gas gun
Туре	Impact test facility
Scale	Full scale tests
Experiments	Small projectiles.

Technical details

Dimensions	up to 120m.s ⁻¹ .
Temperatures	Ambient temperature
Pressure	-
Media	

Special features

Experiments – Equipment

Experiments	Testing of storage vessels
Level of detail	-
Instrumentation	High speed video also available.
Schedule	<i>time needed for: preparation (), conduction (), interpretation of experiments()</i>

Tools

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

What kind of movable equipment is available and could be shared?

None

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Which additional equipment could enhance the results of your experiments?

Name	190 mm gas gun
Туре	Impact test facility
Scale	Full scale tests
Experiments	up to 25 kg projectiles.

Technical details

Dimensions	up to 25 kg projectiles at up to 300m.s ⁻¹ .
Temperatures	Ambient temperature
Pressure	-
Media	
Special features	

Experiments – Equipment

Experiments Testing of storage vessels

-

Level of detail

Instrumentation	High speed video also available.
Schedule	time needed for: preparation (), conduction (), interpretation of experiments()

Tools

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

What kind of movable equipment is available and could be shared?

None

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Which additional equipment could enhance the results of your experiments?

Name	Impact test track
Туре	Impact test facility
Scale	Full scale tests
Experiments	<i>Dynamic impact tests on components/ tanks etc.</i>

Technical details

Dimensions	Twin gauge impact track wit maximum impact speed of 23 m/s and truck masses of 23 tonnes .
Temperatures	Ambient temperature
Pressure	-
Media	Tests completed with large diesel tanks.
Special features	Site suitable destructive testing leading to fire and explosion

Experiments	Testing of storage vessels
Instrumentation	Force, strain, displacement and others as required, acquired at a maximum logging rate of 10 MSamples per second. High speed video also available.
Schedule	time needed for: preparation (3 weeks), conduction (2 days per test), interpretation of experiments(2 weeks)
Tools	Microlink, FAMOS software, Excel Software

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

5

What kind of movable equipment is available and could be shared?

None

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

Impact testing of storage vessels and assessment of resulting release/fireball.

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

.

Which additional equipment could enhance the results of your experiments?

Name	Drop Tower
Туре	Impact test facility
Scale	Indoor
Experiments	up to 10 tons.

Technical details

Dimensions	up to 10 tons over 3.3m.
Temperatures	Ambient temperature
Pressure	-
Media	
Special features	

Experiments	Testing of storage vessels
Instrumentation	High speed video also available.
Schedule	time needed for: preparation (), conduction (), interpretation of experiments()
- ·	

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

What kind of movable equipment is available and could be shared?

None

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Which additional equipment could enhance the results of your experiments?

Name	Drop Tower
Туре	Impact test facility
Scale	Full scale tests
Experiments	drops of up to 25 m.

Technical details

Dimensions	25 m.
------------	-------

- Temperatures Ambient temperature
- Pressure -
- Media

Special features

Experiments	Testing of storage vessels
Instrumentation	High speed video also available
Schedule	time needed for: preparation (), conduction (), interpretation of experiments()
Tools	

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

What kind of movable equipment is available and could be shared?

None

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Which additional equipment could enhance the results of your experiments?

Partner: INASMET

Facilities: - SSRT equipment

- NACE TM 01-77 testing equipment
- Fatigue testing equipment
- LEČO TCH 600
- SHS reactor
- PEMFC testing equipment
- SOFC testing equipment

Name	SSRT equipment
Туре	autoclave+ tensile testing
Scale	lab scale
Experiments	studies on the effect of hydrogen on the behaviour of materials - hydrogen embrittlement

Technical details

Dimensions	four equivalent SSRT machines with 2 lit Hastelloy C-276 autoclaves
Temperatures	up to 250°C
Pressure	up to 150 bar
Media	an testing (corrosive) media, liquid or gas
Special features	It consist of a universal materials testing equipment

Experiments	The sensitivity of materials to the Hydrogen Induced Cracking (HIC) is studied by means of a combined test in which a mechanical test is performed while hydrogen is produced on the specimen surface.
	The Slow Strain Rate Technique (SSRT) is used for the study of stress corrosion cracking. A tensile test is performed at very low strain rate with the specimen in contact with a corrosive environment and coupled to a potentiostat that applies a cathodic potential to the specimen. Hydrogen is electrochemically produced on the specimen surface during the test.
Instrumentation	load cell, displacement (LVDT), thermocouples, pressure
Schedule	tests on evaluating the sensitivity of materials to SCC/HIC last from some hours up to one month.
Tools	The tested specimen should be studied by optical and scanning electron microscopy in order to identify different fracture mode features.
Further particulars	-

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments? 1

What kind of movable equipment is available and could be shared?

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Which additional equipment could enhance your results?

Name	NACE TM 01-77 testing equipment
Туре	corrosion cells + load applying rings
Scale	lab scale
Experiments	studies on the effect of hydrogen on the behaviour of materials - hydrogen embrittlement

Technical details

Dimensions	Five desktop Rings for different load ranges
Temperatures	ambient
Pressure	atmospheric
Media	corrosive media with gas bubbling (H_2S , others,)
Special features	It consist of a universal materials testing equipment specially designed for testing materials for oil applications (sea water+ H_2S)

Experiments – Equipment

Experiments	The sensitivity of materials to the Hydrogen Induced Cracking (HIC) is studied by means of a combined test in which a mechanical test is performed while hydrogen is produced on the specimen surface.
	In some cases the hydrogen is produced chemically. That is the case of test performed according to NACE TM 01-77 standard in which a tensile load is applied to the specimen immersed in a aqueous solution saturated with H_2S , this acid produced the hydrogen that diffuses into the material.
Instrumentation	displacement, load, time
Schedule	tests on evaluating the sensitivity of materials to SCC/HIC last up to one month
Tools	The tested specimen should be studied by optical and scanning electron microscopy in order to identify different fracture mode features

Further particulars -

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments? 1.

What kind of movable equipment is available and could be shared?

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Which additional equipment could enhance your results?

Name	Fatigue testing equipment	
Туре	Servohydraulic universal tensile testing machine	
Scale	lab scale	
Experiments	studies on the effect of hydrogen on the behaviour of materials in fatigue – corrosion, hydrogen embrittleme	ent

Technical details

Dimensions	-
Temperatures	-
Pressure	-
Media	-
Special features	-

Experiments	The sensitivity of materials to the Hydrogen Induced Cracking (HIC) is studied by means of a combined test in which a mechanical test is performed while hydrogen is produced on the specimen surface. In this case the mechanical test used is a fatigue test and the production of hydrogen is generally electrochemical. For this purpose dynamic mechanical testing equipment is used.
Instrumentation	-
Schedule	-
Tools	-
Further particulars	-

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

What kind of movable equipment is available and could be shared?

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Which additional equipment could enhance your results?

Name	LECO TCH 600
Туре	-
Scale	lab scale
Experiments	chemical analysis of hydrogen in metals

Technical details

Dimensions	-
Temperatures	-
Pressure	-
Media	-
Special features	-
Further particulars	-

Experiments	The presence of gases as nitrogen, oxygen and hydrogen in materials is limited to low values in metals. The analysis of these gases is performed by automatic equipments as the LECO TCH 600.
Instrumentation	temperature, pressure, flow (all incorporated to the equipment but not externally accessible).
Schedule	minutes
Tools	-
Further particulars	-

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments? 1

What kind of movable equipment is available and could be shared?

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Which additional equipment could enhance your results?

Name	SHS reactor
Туре	-
Scale	lab scale
Experiments	Metallic hydride production by SHS

Technical details	
Dimensions	-
Temperatures	-
Pressure	-
Media	different gases (hydrogen, air, nitrogen, steam,)
Special features	-

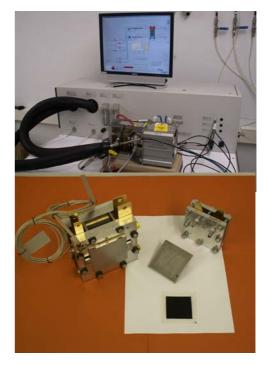
	-
Experiments	Metallic Hydride as hydrogen storage materials are produced by the Self-Propagating High-Temperature Synthesis (SHS) method.
Instrumentation	temperature, pressure, flow
Schedule	hours
Tools	-
Further particulars	-

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments? 1

What kind of movable equipment is available and could be shared?

• To prepare filling possible gaps


What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Which additional equipment could enhance your results?

Name Type	PEMFC Testing Equipment Fuelcon C050	
Scale	lab scale	
Experiments	Evaluation of PEMFC components behaviour	
Fechnical details		

nitrogen, steam, ...)

T

Dimensions

- Temperatures
- Pressure

Media	different gases (hydrogei	n. air.
Modia	anioronic gabbo (nyarogor	<i>i</i> , u <i>i</i> ,

- Special features up to 500w
- Further particulars -

Experiments	Electrochemical testis. V/l curves. Dura	ation test.
Level of detail	-	

- Instrumentation temperature, pressure, flow
- Schedule hours / weeks
- Tools _
- Further particulars -

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments? 1

What kind of movable equipment is available and could be shared?

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Which additional equipment could enhance your results?

Name Type	SOFC Testing Equipment		
Scale	lab scale		
Experiments	Evaluation of SOFC components behaviour		
Technical details			
Dimensions	-		
Temperatures	-		

-

Te

Pressure

Media

different gases (hydrogen, air, nitrogen, …)

Special features

Further particulars -

Experiments – Equipment

Experiments	Electrochemical testis. V/I curves. Duration test.
Level of detail	-
Instrumentation	temperature, pressure, flow

Schedule hours / weeks

Tools -

Further particulars -

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments? 1

What kind of movable equipment is available and could be shared?

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Which additional equipment could enhance your results?

Partner: INERIS

Facilities: - The "Basket"

- ISO-1m³ chamber, Dust-gas explosion room (DG1m3)
- 10 m³ chamber, Dust-gas explosion room (DG10m3)
- INERIS-100 m³ chamber, Dust-gas explosion room (DG100m3)
- Flame Acceleration Pad (FAP)
- Flexible Ignition Facilities (FIF)
- Leak detection unit (LDU)
- High pressure-high temperature-2 m³ sphere (HPT2m3)
- Burton 1000 b chamber,
- High pressure-high temperature 500 ml explosion chamber (HPT500ml)
- Open Fire Area (OFA)
- Unconfined Cloud Area (UCA)
- Sensors and Safety Devices Laboratory

Name	The "Basket"
Туре	large scale test area
Scale	large scale
Experiments	rupturing of confinements and investigation of fracturing and missiles

Technical details

Dimensions	4 meters large, 4 m long, 4 meters high
Temperatures	ambient
Pressure	ambient
Media	flammable liquid and gases
Special features	for typical volumes of a few tens of litres bursting with a maximum TNT equivalent of 1 kg
	mesh resistance to impact = 60 000 Joules
Further particulars	-

Experiments – Equipment

Experiments investigation of the bursting of metallic confinements by using high speed video effects of the dynamics of the pressure rise effects of an external heating

Instrumentation

nature	principle	range	error
temperature	thermocouple	-273 to 1700 K	<i>±</i> 0.5 °C
pressure	piezoresistive device	0 to 1000 bar	<i>±</i> 0.1% range
gas analysis	Oxygen controllers	0 to 100%	\pm 0.2% abs (gas)
video	normal and high speed motion	25 to 8000 fps	\pm 60 μ s

Schedule 2 technicians for 4 days typically

Tools

Further particulars -

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments ? 2 technicians

What kind of movable equipment is available and could be shared ?

All standard measurement techniques

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modification and or by applying additional instrumentation ?

Provide a faster video system to tracks the cracks !

• To prepare promotion and specialisation

What features/possibilities would you like to promote ?

It is possible to investigate the dynamics of fracturing , missile effects and mitigation techniques (shields)

Which additional equipment could enhance your results?

Work out a practicable mean to measure more precisely the deformations.

Name	ISO-1 m³ chamber Dust-gas explosion room (DG1m3)
Туре	vented or closed vessel
Scale	large scale
Experiments	Kst and Kg measurements (Pmax)
	turbulence/mixing diagnostic with aerodynamical probes
	flame propagation diagnostic

flame propagation diagnostic with pressure/temperature/ionisation gages safety device tests like flame arresters, vents, suppressors

Technical details

Dimensions	1,37 m long and 0,95 m in diameter
Temperatures	ambient
Pressure	20 bar overpressure max
Media	flammable gases and dusts
Special features	fitted for Kst/Kg tests in accordance with European standard
	Even gaseous mixtures are produced by pneumatic injection $(\pm 0.2\% \text{vol.})$
Further particulars	a-variable ignition sources (coils, sparks, jets,) and position
	b-variable vent area (from 0 to 400 mm)
	c-possibility of coupling with pipes up to 400 mm in diameter

Experiments – Equipment

Experiments Apart from classical explosion violence measurements, this vessel is used to investigate flame propagation rates (flame trajectories and velocities, turbulence, flame temperatures...) in various configurations (closed, open, with a duct, connected to another vessel..). It has been recently used to investigate in details the relationships between internal and external explosions, the flame dynamics when coupled to a duct and the incidence of particles on the turbulence field. Flame arresters, vents, suppressors are frequently tested with this vessel

Level of detail detailed information may be obtained but internal visualisation is difficult

HySafe – Safety of Hydrogen as an Energy Carrier

Instrumentation

nature	principle	range	error
temperature	thermocouple	-273 to 1700 K	±0.5 °C
pressure	piezoresistive device	0 to 100 bar	<i>±</i> 0.1% range
gas analysis	Oxygen controllers	0 to 100%	<i>±</i> 0.2% abs (gas)
video	high speed motion	125 to 8000 fps	± 60 µs
flame trajectory	in-house ionisation gages	0 to 2000 m/s	±1%
turbulence	in-house probes	0.2 to 100 m/s	<i>±</i> 5% range

Schedule standard explosion violence of one product : 3 days for 2 technicians

preparing a fully equipped test for combustion diagnostic in the isolated vessel : 2 days for 2 technicians

preparing a fully equipped test for combustion diagnostic in a vessel duct configuration: 7 days for 2 technicians

Tools

standard

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments ?

2 technicians

What kind of movable equipment is available and could be shared ?

All standard measurement techniques (more difficult for ionisation gages and turbulence measurement)

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modification and or by applying additional instrumentation ?

In-house techniques have been internally developed at lab scale to heat up very rapidly the atmosphere inside a vessel without heating the envelope (principle of a rapid compression machine). They need to be scaled up and adapted to perform explosion mitigation at higher temperature (flame arresters, venting...).

• To prepare promotion and specialisation

What features/possibilities would you like to promote ?

This versatile equipment with the afore mentioned battery of equipments proved very useful for the investigation of flame dynamics especially in view of flame transmission from or towards a pipe.

Which additional equipment could enhance your results?

Data reduction need to be refined to enable a better correlation between flame dynamics and pressure effects. In this view, software modelling is required but also better techniques to detect the flame.

Name	10 m³ chamber Dust-gas explosion room (DG10 m3)	
Туре	vented vessel	
Scale	large scale	
Experiments	turbulence/mixing diagnostic with in-house aerodynamical probes	
	flame propagation diagnostic with pressure/temp	perature/ionis

diagnostic with pressure/temperature/ionisation gages safety device tests like vents, suppressors

Technical details

Dimensions	5.83 m long and 1.6 m in diameter
Temperatures	ambient
Pressure	7 bar overpressure max
Media	flammable gases and dusts
Special features	4 flanges (800 and 1600 mm in diameter)
	<i>Even gaseous mixtures are produced by pneumatic injection (±0.2%vol.) by multiple ports</i>
Further particulars	a-variable ignition sources (coils, sparks, jets,) and position
	b-variable vent area (from 200 to 1600 mm)
	c-possibility of coupling with pipes up to 800 mm in diameter

Experiments – Equipment

Experiments
 This vessel is used to investigate flame propagation rates (flame trajectories and velocities, turbulence, flame temperatures...) in various configurations (open, with a duct, connected to another vessel..). It has been recently used to investigate in details the relationships between internal and external explosions, the flame dynamics when coupled to a duct and the incidence of particles on the turbulence field. Flame vents, suppressors, barriers are regularly tested with this vessel.
 Level of detail

visualisation

HySafe – Safety of Hydrogen as an Energy Carrier

Instrumentation

nature	principle	range	error
temperature	thermocouple	-273 to 1700 K	±0.5 °C
pressure	piezoresistive device	0 to 1000 bar	<i>±</i> 0.1% range
gas analysis	oxygen controllers	0 to 100%	<i>±</i> 0.2% abs (gas)
video	normal and high speed motion	25 to 8000 fps	± 60 µs
flame trajectory	in-house ionisation gages	0 to 2000 m/s	±1%
turbulence	in-house probes	0.2 to 100 m/s	<i>±</i> 5% range

Schedulepreparing a fully equipped test for combustion diagnostic in the isolated
vessel : 3 days for 2 technicians (1 test = ½ day with 2 techn.)preparing a fully equipped test for combustion diagnostic in a vessel
duct configuration: 10 days for 3 technicians (1 test = 1 day with 2
techn.)Toolscranes to move the flanges or the vessel

Further particulars -

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments ?

2 to 3 technicians

What kind of movable equipment is available and could be shared ?

All standard measurement techniques (more difficult for ionisation gages and turbulence measurement)

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modification and or by applying additional instrumentation ?

• To prepare promotion and specialisation

What features/possibilities would you like to promote ?

This versatile equipment with the afore mentioned battery of equipments proved very useful for the investigation of flame dynamics especially in view of flame transmission from or towards a pipe.

Which additional equipment could enhance your results?

Data reduction need to be refined to enable a better correlation between flame dynamics and pressure effects. In this view, software modelling is required but also better techniques to detect the flame.

Name	INERIS-100 m ³ chamber Dust-gas explosion room (DG100m3)	A COLOR HALE
Туре	vented vessel	
Scale	large scale	NOT 1
Experiments	turbulence/mixing diagnostic with in-house aerodynamical probes and tomographic techniques	
	flame propagation diagnostic	with pressure/t

flame propagation diagnostic with pressure/temperature/ionisation gages safety device tests like vents, suppressors

Technical details

Dimensions	10 m long and 3.5 m in diameter (square section)
Temperatures	ambient
Pressure	2 bar overpressure max
Media	flammable gases and dusts
Special features	vent area from 1 to 10 m²
	Even or stratified gaseous/dusts mixtures are produced by pneumatic injection ($\pm 0.2\%$ vol.) by multiple ports.
Further particulars	a-variable ignition sources (coils, sparks, jets,) and position
	b-variable vent area (from 1 to 10 m^2)
	c-possibility of coupling with pipes up to 800 mm in diameter

Experiments – Equipment

ExperimentsThis vessel is used to investigate flame propagation rates (flame
trajectories and velocities, turbulence, flame temperatures...) in various
configurations (open, with a duct, connected to another vessel..). It has
been recently used to investigate in details the relationships between
internal and external explosions and the incidence of particles on the
turbulence field. Flame vents, suppressors, barriers are tested with this
vessel but also the resistance of structural components to blast.
It is also used to investigate the stratification of gases and diffusion
detailed information may be obtained either by probes or via internal
visualisation and laser tomography (Ar ion laser + rotating mirror)

HySafe – Safety of Hydrogen as an Energy Carrier

Instrumentation

nature	principle	range	error
temperature	thermocouple	-273 to 1700 K	<i>±</i> 0.5 °C
pressure	piezoresistive device	0 to 1000 bar	<i>±</i> 0.1% range
gas analysis	Oxygen controllers and tomography	0 to 100%	<i>±</i> 0.2% abs (gas)
video	normal and high speed motion	25 to 8000 fps	± 60 µs
flame trajectory	in-house ionisation gages	0 to 2000 m/s	±1%
turbulence	in-house probes	0.2 to 100 m/s	±5% range

Schedule preparing a fully equipped test for combustion diagnostic in the isolated vessel : 5 days for 3 technicians

preparing a fully equipped test for combustion diagnostic in a vessel duct configuration: 20 days for 3 technicians

preparing a fully equipped test for diffusion of gases in the isolated vessel : 10 days for 2 technicians

Tools cranes to move the flanges or the vessel

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments ?

2 to 3 technicians

What kind of movable equipment is available and could be shared ?

All standard measurement techniques (more difficult for ionisation gages, turbulence measurement and tomographic technique)

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modification and or by applying additional instrumentation ?

We may investigate internal or external mixing field and flame dynamics by using tomography. However at such scale a much more powerful light source is required. It is partially available but the optics has to be designed.

• To prepare promotion and specialisation

What features/possibilities would you like to promote ?

This versatile equipment with the afore mentioned battery of equipments proved very useful for the investigation of flame dynamics especially in view of large scale flame development and instabilities.

Which additional equipment could enhance your results?

Cloud dynamics with powerful tomography. Data reduction need to be refined to enable a better correlation between flame dynamics and pressure effects. In this view, software modelling is required but also better techniques to detect the flame.

Name	Flame Acceleration Pad (FAP)	
Туре	pipes	Constanting of
Scale	large scale	
Experiments	flame propagation in tubes and pipes fundamental studies	
	vents and flame arrester testing	
	coupling with vessels is possi	ble

Technical details

Dimensions	100, 250, 450, 700 and 800 mm diameter steel tubes; up to 30 m long for each diameter
Temperatures	ambient
Pressure	20 bar max.
Media	flammables gases and dusts
Special features	up to 24 ports for pressure measurements and flame detection along the pipes
Further particulars	a-varied internal ignition devices (sparks, coil, hot spot)
	b-special mass-flowmeter device to fill the duct very homogeneously

Experiments	investigation of flame dynamics and self acceleration. DDT analysis
	study of the efficiency of flame arresters by varying the flame velocity at the barrier
	flame dynamics in a system duct-vessel
Level of detail	flame trajectory and pressures, dynamics of the mitigation technique if any

HySafe – Safety of Hydrogen as an Energy Carrier

Instrumentation

nature	principle	range	error
temperature	thermocouple	-273 to 1700 K	<i>±</i> 0.5 °C
pressure	piezoresistive device	0 to 200 bar	<i>±</i> 0.1% range
gas analysis	Oxygen controllers	0 to 100%	<i>±</i> 0.2% abs (gas)
flame trajectory	in-house ionisation gages	0 to 2000 m/s	±1%

Schedule preparing a fully equipped test for combustion diagnostic in the isolated duct : 5 days for 2 technicians

preparing a fully equipped test for combustion diagnostic in a vessel duct configuration: 10 days for 3 technicians

Tools cranes

Further particulars -

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments ?

2 to 3 technicians

What kind of movable equipment is available and could be shared ?

All standard measurement techniques (more difficult for ionisation gages and turbulence measurement)

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modification and or by applying additional instrumentation ?

• To prepare promotion and specialisation

What features/possibilities would you like to promote ?

This versatile equipment with the afore mentioned battery of equipments proved very useful for the investigation of flame dynamics especially in view of flame transmission from or towards a pipe. New injection techniques should be thought about to be able to master non homogeneous mixtures.

Which additional equipment could enhance your results?

Data reduction need to be refined to enable a better correlation between flame dynamics and pressure effects. In this view, software modelling is required but also better techniques to detect the flame.

Name	Flexible Ignition Facilities (FIF)
Туре	small vessel with various igniters
Scale	small scale
Experiments	investigation of the characteristics of "practical" ignition sources
	analysis of the fundamentals of flame initiation

1-tube for mixture2-impact stand3-friction stand

Technical details

Dimensions	chamber = tube 80 cm high, 10 cm wide, square, transparent, for gases and two phase mixtures
Temperatures	ambient
Pressure	ambient
Media	flammable gases and dusts
Special features	-
Further particulars	-

Experiments – Equipment

Experiments	Investigation of the characteristics of "practical" ignition sources like electrostatic discharges up to several Joules, electrical sparks, impacts and friction sources, hot spot, laser heating,
	analysis of the fundamentals of flame initiation (point ignition, continuous and transient surface ignition, …).
Level of detail	extremely detailed information may be obtained including temperature and microcalorimetric techniques to measure the energy release by a given ignition source in the atmosphere.

HySafe – Safety of Hydrogen as an Energy Carrier

Instrumentation

nature	principle	range	error
IR thermography	IR video/ 2 colour pyro.	200 to 2000 °C	±30 °C
temperature	thermocouple	-273 to 1700 K	±0.5 °C
energy	in-house microcalorimetry	0 to 1000 J	±1% range
pressure	piezoresistive device	0 to 1 bar	<i>±</i> 0.1% range
gas analysis	Oxygen controllers	0 to 100%	<i>±</i> 0.2% abs (gas)
video	normal and high speed motion	25 to 8000 fps	± 60 µs
flame trajectory	in-house ionisation gages	0 to 2000 m/s	±1%
data acquisition	LECROY 1 GHz		

Schedule minimum ignition curve: 5 days for 1 technician

Tools

Further particulars -

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments ?

1 technicians

What kind of movable equipment is available and could be shared ?

Measuring techniques can be shared but training is required

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modification and or by applying additional instrumentation ?

A very high voltage supply equipment for electrostatics; UV detection and measurements.

• To prepare promotion and specialisation

What features/possibilities would you like to promote ?

The high versatility of the laboratory and the possibility to mimic real ignition source and measure/analyse their characteristics.

Which additional equipment could enhance your results?

Prepare a very low energy electrical spark device and means to measure very low energies (below 0,3 mJ)

Name	Leak detection unit (LDU)
Туре	10 to 40 litre volume
Scale	medium scale
Experiments	measure leak rates of components

Technical details

Dimensions	very tight vertical cylinder
Temperatures	ambient regulated \pm 0.02 °C
Pressure	ambient inside but component may be pressurised up to 1000 bar
Media	flammable gases
Special features	leak rates measurable from 10 ⁻⁴ cm ³ /s to 1000 cm ³ /s
Further particulars	may be adapted to other temperature conditions

Experiments – Equipment

Experiments	Measurement of the leakage rate of pneumatic components whatever the leakage path and rate. Measurement is achieve via pressure detection inside the chamber
Level of detail	10 ⁻⁴ cm ³ /s to 1000 cm ³ /s, ±1 Pa, ±0.02°C

Instrumentation

nature	principle	range	error
temperature	regulated	293 K	±0.02 °C
pressure	Piezoresistive/capacitive device	0 to 100000 Pa	±1 Pa
data acquisition	SEFRAM 100 kHz		

Schedule 1 technician 10 days for a few components, 1 engineer or data reduction

Tools

_

Further particulars -

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments ?

1 technicians

What kind of movable equipment is available and could be shared ?

Measuring techniques can be shared but training is required

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modification and or by applying additional instrumentation ?

• To prepare promotion and specialisation

What features/possibilities would you like to promote ? *Additional testing with other components than vehicle* Which additional equipment could enhance your results?

Name	High pressure-high temperature-2 m³ sphere (HPT2m3)	
Туре	closed vessel	
Scale	large scale	
Experiments	determination of flammable limits, auto- ignition delay and explosion parameters (dP/dt, Pmax, flame velocities) of gases and vapours under high pressu	The and high temperature.

Technical details

Dimensions	1,55 m diameter, steel sphere 65 mm thick
Temperatures	ambient to 200°C regulated
Pressure	0 - 30 bar in charge. 200 bar overpressure
Media	flammables gases and vapours
Special features	3 flanges 350mm diameter for gases and liquids inlet and outlet, pressure measurements, gases analysis, unique mixing device
Further particulars	varied internal ignition devices (sparks, coil, hot spot)

Experiments – Equipment

Experiments	closed volume explosion experiments in "ideal" spherical situation; level of accuracy equivalent to lab scale for flame diagnostic specially adapted to produce exotic mixtures
Level of detail	detailed information may be obtained either by probes or via internal visualisation

HySafe – Safety of Hydrogen as an Energy Carrier

Instrumentation

nature	principle	range	error
temperature	thermocouple	-273 to 1700 K	±0.5 °C
pressure	piezoresistive device	0 to 1000 bar	<i>±</i> 0.1% range
gas analysis	Oxygen controllers	0 to 100%	<i>±</i> 0.1% abs
video	normal and high speed motion	25 to 8000 fps	± 60 μs
flame trajectory	in-house ionisation gages	0 to 2000 m/s	±1%

Schedule

preparation : 2 technicians for 5 days typically test : 2 technicians for 1 to 2 day(s)

Tools standard

Further particulars -

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments ?

2 technicians

_

What kind of movable equipment is available and could be shared ?

All standard measurement techniques (more difficult for ionisation gages and turbulence measurement)

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modification and or by applying additional instrumentation ?

Prepare an additional system to inject mists under pressure.

• To prepare promotion and specialisation

What features/possibilities would you like to promote ?

This equipment with the afore mentioned battery of equipments proved very useful for the investigation of fundamental parameters of the propagation.

Which additional equipment could enhance your results?

Name	Burton 1000 b chamber High pressure-high temperature 500 ml explosion chamber (HPT500ml)	
Туре	closed vessel	
Scale	small scale	
Experiments	maximum pressure measurements at very high temperatures with various mixtures	h pressures and
	ignition behaviour (sparks, self-ignition,)	

Technical details

Dimensions	½ litre
------------	---------

- Temperatures up to 300 °C
- Pressure up to 1000 bar max explosion pressure
- Media flammable gases and liquids
- Special features mixing device
- Further particulars -

Experiments – Equipment

Experiments	explosion violence measurements and ignition test in abnormal conditions
Level of detail	detailed information may be obtained but internal visualisation is difficult

4

HySafe – Safety of Hydrogen as an Energy Carrier

Instrumentation

nature	principle	range	error
temperature	thermocouple	-273 to 1700 K	±0.5 °C
pressure	piezoresistive device	0 to 1000 bar	<i>±</i> 0.1% range
gas analysis	Oxygen controllers and tomography	0 to 100%	<i>±</i> 0.2% abs (gas)
flame trajectory	in-house ionisation gages	0 to 2000 m/s	±1%

Schedule

explosion violence of one product and one set of conditions: 3 days for 1 technicians

Tools

Further particulars -

Information for the preparation of integration

special

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments ?

1 technicians

_

What kind of movable equipment is available and could be shared ?

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modification and or by applying additional instrumentation ?

• To prepare promotion and specialisation

What features/possibilities would you like to promote ?

The possibility to perform tests in very unusual situations

Which additional equipment could enhance your results?

Prepare a very low energy electrical spark device. A fast data acquisition system.

Name	Open Fire Area (OFA)
Туре	large scale test area
Scale	large scale
Experiments	ignition and fire of gaseous jets and liquid pools

Technical details	
Dimensions	20 meters large, 50 m long
Temperatures	ambient
Pressure	ambient
Media	flammable liquid and gases
Special features	experimental pool (5 m^2 , 0.4 m deep) for liquid fires
	possibility to produce large jets of more than 200 bar through a hole of more than 20 mm
	investigation of the fire of large static cloud (more than 200 m ³)
Further particulars	high pressure stand (up to 1000 bar)

Experiments – Equipment

Experimente	investigation of liquid fires
Experiments	investigation of liquid fires

investigation of jet fires under high pressure or of large static clouds

Instrumentation

nature	principle	range	error
temperature	thermocouple	-273 to 1700 K	±0.5 °C
irradiance	thermopiles	up to 50 000 kW/m ²	<i>±</i> 5% range
turbulence measurement	In-house probes	0.2 to 100 m/s	<i>±</i> 5% range
video	normal and high speed	25 to 8000 fps	±60 μs
IR thermography	IR video/ 2 colour pyro.		

 Schedule
 assembling a jet experiment : 2 technicians for 2 days typically (one hour for a test)

 assembling a static cloud experiment : 3 technicians for 4 days (a few hours for a test)

 Tools

Further particulars -

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments ?

2 to 3 technicians

What kind of movable equipment is available and could be shared ?

All standard measurement techniques

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modification and or by applying additional instrumentation ?

Develop a high speed irradiance measurement tool for highly transient phenomena.

• To prepare promotion and specialisation

What features/possibilities would you like to promote ?

The capacity to perform tests with large clouds and high pressures.

Which additional equipment could enhance your results?

Provide a larger very high pressure tank of larger volume for quasi stationary test and a HP compressor with a larger flow rate.

Name	Unconfined Cloud Area (UCA)
Туре	large scale test area
Scale	large scale
Experiments	fundamental studies on flammable gases and liquids releases from high pressure tanks
	unconfined explosions investigations

Technical details

Dimensions	30 meters large, 75 m long
Temperatures	ambient
Pressure	ambient
Media	flammable liquid and gases
Special features	experimental tank (5 m ³ , 40 bar) equipped with control and measurement settings (temperature, pressure, flow rate) and nozzles up to 150 mm)
	possibility to discharge smaller tanks (tens of litres) through nozzles up to 20 mm and pressures up to 700 bars
	experimental system to investigate the formation of very large clouds (including cryogenic spills up to a few kg/s) up to more than 200 m long and 100 m high
Further particulars	high pressure stand (up to 1000 bar)
	special data acquisition system 10 Hz, 220 channels with master/slaves computers

Experiments – Equipment

Experiments investigation of the dispersion plume and mist formation (droplet sizes) for high pressure gases (temperature, concentrations, aerodynamic and density fields)

investigation of the dispersion plume and mist formation (droplet sizes) medium pressure liquid releases and cryogenics (temperature, concentrations, aerodynamic and density fields)

investigation of the development of unconfined explosions in quiescent and turbulent situations (simultaneous measurement of turbulence, pressure flame position and combustion rate)

Instrumentation

nature	principle	range	error
temperature	thermocouple	-273 to 1700 K	±0.5 °C
pressure	piezoresistive devices	0 to 1000 bar	<i>±</i> 0.1% range
velocimetry and	PDA laser	1 to 400 m/s	<i>±</i> 1% range
anemometry		2 to 600 µm	
turbulence measurement	in-house probes	0.2 to 100 m/s	<i>±</i> 5% range
video	normal and high speed motion	25 to 8000 fps	± 60 µs

Scheduleassembling a jet experiment : 2 technicians for 5 days typically (a few
hours for a test)preparing a large unconfined explosion : 3 technicians for 5 days
preparing the equipment for liquid spills : 3 technicians for 40 days (1
to 2 days per test)Toolscranes for heavy equipments and to erect the mast for the 220 gauges
measuring system

Further particulars -

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments ?

2 to 3 technicians

What kind of movable equipment is available and could be shared ?

All standard measurement techniques (more difficult for ionisation gages and turbulence measurement) including the special device for cryogenic spills

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modification and or by applying additional instrumentation ?

We may investigate gas dynamics by using tomography and other optical techniques. However at such scale a powerful light source is required and large optics (system also useful for the explosion chambers)

• To prepare promotion and specialisation

What features/possibilities would you like to promote ?

These versatile equipments with the afore mentioned battery of equipments proved very useful for the investigation of cloud and flame dynamics especially for large momentum releases and cryogenic spills.

Which additional equipment could enhance your results?

Provide a larger very high pressure tank of larger volume for quasi stationary test and a HP compressor with a larger flow rate. Cloud dynamics with powerful tomography and other optical technique like interferometry.

Name	Sensors and Safety Devices Laboratory
Туре	Environmental testing for explosive/toxic gases
Scale	Laboratory scale
Experiments	Sensors performance testing

Technical details

Dimensions	Facility: Test chambers approx. 1 to 5 litres volume
Temperatures	- 40 to +180 °C
Pressure	Test chamber: 0.8 to 1.3 bar
Media	hydrogen, air, water vapour and up to 3 other gases (e.g. methane, propane, butane, CO, CO2, SO2, NO2, NH3, Cl2, HF) and up to 2 other vapours (e.g. ethanol, isooctane, BTEX, chlorinated solvents)
Special features	Reliable method by using certified gas mixtures, a specific system designed by the laboratory to generate vapours and calibrated electrical controlling / measuring devices. A sophisticated gas handling and environmental control system allows to simulate real conditions using context of the sensors (complex gas mixtures, humidity, temperatures, altitudes (pressure), air velocity, vibration) designed in view of testing sensors performance and providing assistance to manufacturers during the development of their sensors (flammable, toxic and oxygen).
Further particulars	Environmental testing is carried out in an appropriate test chamber with walls resistant against gases or/and vapours used. The test chamber is put in a climatic chamber for environmental testing.
	Test gas and/or vapours mixtures are generated dynamically by using analogic and digital mass flow controllers from appropriate gas standard cylinder and a specific vapour generation system. All generated mixtures can contain an inert carrier gas (synthetic air, nitrogen or dioxide carbon) and humidity.
	Tests can be automated. Gas flow rate, temperature and humidity are controlled by PC.
	The sensors and safety devices laboratory is able to design specific test facilities according to customer / manufacturer specifications.
Experiments - Equi	pment
Experiments	Assessment of hydrogen sensors performance with respect to: - Sensitivity to target gas - Influence of temperature, humidity and altitude (reduced pressure) - Cross sensitivity to other gases / vapours

- Cross sensitivity to other gases / vapours
- Response/recovery time
- Ageing and reproducibility
- Air velocity
- Response time (in dynamics and static)
- Electromagnetic compatibility

Instrumentation

Instrument type	Further details
Digital and analogic mass flow controllers	0.5 cm ³ /min to 5 l/min
Pressure controllers	800 to 1300 mbar
Thermostatic bathes	4.5 litres -25 to +200 °C
Thermostatic battles	6 litres -15 to +100 °C
	6 litres -30 to +150 °C
Chilled mirror hygrometer	Dew point: –40 to +85 °C
	Frost point: -25 to +180 °C
Capacitive probes (humidity measuring)	0 – 100 % RH
PT 100	-50 to +200 °C
Hot wire (air velocity measuring)	0 to 10 m/s. 0 to 15 m/s
Soap bubble flow meters	1 cm ³ /min to 6 l/min
Electrodynamics vibration table	0 to 100 Hz – peak 0.9 mm
Recorders up to 16 channels	250 KHz with 16 channels
Data acquisition systems with 20 channels	100 kHz with 20 channels
Climatic chambers	540 I / -40 to +180°C / 5 to 95 %RH - 15 to 95°C
	100 and 250 I / -25 to +125°C / 5 to 95 %RH - 15 to 95°C
Electromagnetic devices	All devices needed by NF-EN 61000-6
Svringe pump system	10 ⁻⁴ µl/hour to 220 ml/min
Air velocity loop	2 to 15 m/s

```
ScheduleThe laboratory has assessed gas sensors performance over 20 years.<br/>The time needed for preparation of experiments will be about 1 to 4<br/>day (depending on the demand), the time needed for conduction of<br/>experiments will depend on the test. The sensors output data are<br/>visualised in real time, and recorded on general laboratory software<br/>platforms and processed if needed.Toolsgeneral labs software
```

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

To prepare/conduct experiments 2 persons are needed.

What kind of movable equipment is available and could be shared?

The facility is integrated in a multi-purpose laboratory at INERIS, and is not suitable to be moved.

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

The system has been designed in view of the follow major upgrades: - Response time at different temperature.

To prepare promotion and specialisation

What features/possibilities would you like to promote?

INERIS can provide assistance to companies developing hydrogen safety sensors in meeting the performance requirements demanded by users.

INERIS is highly interested in co-operating with both manufacturers and users, to help developing a unified procedure for testing hydrogen sensors performance in a controlled environment.

Partner: JRC

 Facilities:
 - Hydrogen solid-state storage laboratory (SolTeF)

 - Sensor Testing Facility (SenTeF)

 - High-pressure hydrogen container testing facility (GasTeF)

Name	Hydrogen solid-state storage laboratory (SolTeF)
Туре	Laboratory for the assessment of hydrogen solid-state storage performance parameters
Scale	Laboratory scale
Experiments	The laboratory consists of various analytical instruments for the study of the hydrogen sorption and de-sorption behaviour. The inst gravimetric principle. In the former of apparatus (3 instruments) while in th

and de-sorption behaviour. The instruments are based on volumetric or gravimetric principle. In the former case they consists of Sievert's type apparatus (3 instruments) while in the latter they are a modification of thermal-gravimetric apparatus (2 instruments). Many instruments are coupled to mass spectrometers permitting also spectroscopic studies. The laboratory performs assessment of potential hydrogen storage materials with respect to storage capacity, thermodynamic and kinetics quantities and cycling stability.

Technical details

General aspects of laboratory equipment are given in the following, for details on individual instruments see HySafe document D35 "Compilation of descriptions of instrumentation".

Dimensions	The individual instruments of the SolTeF have dimensions typically of $1 \times 1 \times 1$ m.
Temperatures	Typical temperature ranges, depending on the instrument, are from room temperature to 773 K or from 77 K to 1273 K.
Pressure	The gravimetric instruments have range from high vacuum to 20 bar. The volumetric instruments can reach 100 and in one case 200 bars.
Media	Hydrogen, nitrogen and other inert gases
Special features	The systems are fully automated and can perform repeated sorption cycles, at a range of temperatures, without user intervention. The material samples can be loaded on and unloaded from the reaction chambers under protective atmosphere. Resolution of gravimetric measurements of is 1 μ g, minimal sample mass for volumetric is approximately 1 mg.
Further particulars	Kinetic absorption and desorption measurements can be made using two gas flow meters.

Experiments - Equipment

Experiments Assessment of potential hydrogen storage materials with respect to:

- 1) Storage capacity (e.g. maximum wt%)
- 2) Pressure-Composition-Isotherms (PCI) behaviour
- 3) Enthalpy and Entropy of formation/reaction (van t'Hoff method)
- 4) Thermal Desorption Spectroscopy (TDS)
- 5) Sorption/desorption rates
- 6) Cycling Stability
- 7) Thermal-Gravimetric Analysis (TGA-MS)
- 8) HE-picnometry for the measurement of true densities
- 9) Specific surface analysis by BET method

Instrumentation	Overview:
	Reaction chambers - volume available for the sample ~2 cm ³ Temperature control and measurement system – furnace, cryofurnace, thermocouples Pressure measurement system - four HPO series pressure transducers Mass flow meters with maximum flow range for absorption =1000 sccm Rotatory, membrane and turbo-molecular vacuum pumps Automation system Glove boxes for the preparation, weighting and loading of material samples under protective atmosphere. Integrated quadrupole mass spectrometer. Calibration of the molar flow using a reference gas. Ball mill for the size-reduction and mixing of material powders.
Schedule	The time needed for preparation of experiments is about 1 day.
	The time needed for the conduction of experiments depends on what materials and which properties are to be studied. A typical Pressure- Composition isotherm for an intermetallic hydride will take less than 24 hours, while for a NaAIH ₄ could require a week. Long term cycling stability test could take months, depending on the number of cycles to be performed.
	The time needed for interpretation of experiments also depends on the properties being measured. The simple determination of a sample's plateau pressure would take less than 1 hour, but further analysis and fitting could take considerably longer.
Tools	General laboratory software

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

1 technician or scientist

What kind of movable equipment is available and could be shared?

The laboratory is part of the JRC-IE infrastructure and cannot be moved. Access to external users is granted in the frame of research training (e.g. PhD Thesis) and/or collaboration agreements with JRC.

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or applying additional instrumentation?

The purchase of a high-pressure hydrogen calorimetry will allow the direct measurement of thermodynamic quantities.

The finalisation of an in-house volumetric instrument with external reaction chamber will allow testing of solid-state storage micro-tanks under near-real-life conditions.

To prepare promotion and specialisation

What features/possibilities would you like to promote?

JRC is highly interested in participating in validation exercises for the harmonisation of data, the identification of best practices and standardisation of test methods and procedures related to hydrogen storage capacity measurements of metal hydrides and porous materials.

Name	Sensor Testing Facility (SenTeF)
Туре	Environmental sensor test bench
Scale	Laboratory scale
Experiments	Sensors performance testing

Technical details

Dimensions	Facility: approx. 2.5 x 1 x 1.5 meters Test Chamber: approx. 2.5 litres volume
Temperatures	- 50 to +130 °C

Pressure Test chamber: 0.5 to 1.3 bar (Gas buffers: 5 bar)

Media Hydrogen/air/water vapour + up to 2 other gases (e.g. CO₂, H₂S, SO₂ or NH₃) and up to 2 other vapours (e.g. Ethanol, Isooctane)

- Special features A sophisticated gas handling and environmental control system allows simulating real or atypical ambient conditions (complex gas/vapour mixtures, variable temperature, variable pressure, variable humidity). Accurate independent gas analysis by gas chromatography.
- Further particulars: The system core is a 316 SS test chamber internally coated with Halar polymer for improved resistance against contamination, double walled for circulation of the heating/refrigerating fluid; the chamber is isolated from the laboratory environment by a further containment, streamed with Argon. Test gases and vapours (water, alcohols, alkanes) are released at concentrations down to ppm levels through gas and liquid mass flow controllers and evaporators. The gas composition can be stabilised in buffers or mixed online and can be determined with a 5-column (3 channel) gas chromatograph equipped with multiple detectors. Humidity is measured with a chilled mirror hygrometer.

Experiments - Equipment

Experiments	 Assessment of hydrogen sensor performance with respect to: Sensitivity to target gas Influence of temperature, humidity and altitude (reduced pressure) Cross sensitivity to other gases/vapours sensors response time reaction to sudden changes of environment (temperature, pressure, humidity)
Instrumentation	Mass flow controllers Pressure controllers Liquid mass flow controllers Controlled evaporator mixer Gas Chromatograph equipped with 2 TCD and 1 FID detectors for independent gas analysis (H ₂ , CO, NH ₃ , SO ₂ , CH ₄ , i-octane, CH ₃ OH, C ₂ H ₅ OH, i-propanol)

	HySafe – Safety of Hydrogen as an Energy Carrier
	Circulating bath for chamber temperature control PT100s chamber temperature measurement Chilled Mirror Hygrometer for humidity measurement Pressure transducers for pressure measurement
Schedule	The facility is in operation since 2005. The time needed for preparation of experiments is about 1 day. The time needed for conduction of experiments depends on the type pf tests to be performed The sensors output data is collected and visualised in real time, and recorded on general laboratory software platforms (Labview [®] , Excel [®]).
Tools	General laboratory software

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

2 persons are needed

What kind of movable equipment is available and could be shared?

The facility is integrated in a multi-purpose laboratory at JRC Petten, and is not scheduled to be moved after installation. Access to external users is open in the frame of research training (e.g. Ph.D. Thesis) and/or collaboration agreements with JRC.

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or applying additional instrumentation?

The system has been designed with the possibility of two major upgrades (depending on demand):

1. Installation of a <u>multiple test chamber with actuated sample holders</u>, to enable the system to carry out the following tests:

- resistance to thermal shocks/cycling
- accelerated lifetime testing

2. Installation of a <u>vibrating table</u>, to be used in combination with the existing 2.5 litres chamber for testing sensors performance under simulated on-vehicle use conditions.

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

JRC can provide assistance to companies developing hydrogen safety sensors in meeting the performance requirements demanded by users. JRC is co-operating with manufacturers, end-users and standardisation bodies to help develop a unified procedure for testing hydrogen sensor performance in a controlled environment. JRC is also interested in collaborating with other testing/certification laboratories for inter-laboratory comparisons and round robin testing purposes.

Name	High-pressure hydrogen tank testing facility (GasTeF) Under commissioning beginning 2008	
Туре	<i>N₂-inertised room with pressure vessels</i>	and a state
Scale	Small to full scale	
Experiments	High-pressure cycling and permeation measurements on compressed H₂ / CH₄ storage systems for	

vehicles

Technical details

Dimensions	 Half-buried strongly reinforced concrete bunker with annexed gas storage area. 225 m³ room (10 x 7.5 x 3 m³) inertised using gaseous N₂ including: The pressure vessels containing the parts to be tested, A high-pressure compressor, Controlling equipment and instrumentation. 	
Temperatures	ambient up to approx. 100°C	
Pressure	Vacuum (permeation tests) to 350 bar – Upgrade to ca. 800 bar foreseen	
Media	Methane (pure CH₄) and gaseous hydrogen. Helium, Argon as blanket gases	
Special features	Full-scale testing of CGH2 / natural gas vehicle tanks using the real gases. Testing of other components of the gaseous hydrogen distribution chain shall be possible. The facility is remotely controlled and its operation automatised. The gases are used in a closed-loop circuit between the facility and the storage area. The gas consumption and the amount vented in the atmosphere are minimised.	
Further particulars	 (a) Permeation measurements can be performed statically (at constant high pressure) or dynamically (during pressure-cycling) (b) Permeation tests carried out using gas chromatography (c) Possibility of temperature measurements on the part being tested 	

Experiments - Equipment

Experiments Vehicle storage components (mainly tanks) are pressure-cycled for a pre-defined number of cycles. During the cycling test or after the test the permeation rate is measured using gas chromatography. A typical cycle will consist of 3 minutes filling time and ca. 20 minutes emptying to the low pressure. The results will be validated using existing standards and possibly used as input to pre-normative research.

Instrumentation Measurement performances of the facility will be given at a later stage. Overview of instrumentation: Gas chromatograph with Pulse Discharge Detector, Thermocouples, High-pressure 3-stage piston compressor, Compressor cooling unit, H_2 /CH₄ on the exhaust line of the inert blanket gas (for early detection of dangerously high permeation/leakage rates), H_2 , CH_4 and O_2 concentration sensors in facility room for safety purposes (doubled installation), Automation system including two independent PLC's and Labview[®] software for data acquisition, Closed circuit cameras and other safety-related devices. Schedule The time needed for preparation of experiments is about 5 days. The time needed for conduction of experiments depends essentially on the number of cycles. E.g. a 1500-cycle test will last about 25 days. A static permeation test will last a few hours. For all tests, data is collected in real time.

Tools general labs software

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

At least 3 persons are needed (two of whom accredited as operators)

What kind of movable equipment is available and could be shared?

The facility is located in a safety bunker at JRC Petten, and cannot be moved. Access to external users will be open in the frame of research training (e.g. Ph.D. Thesis) and/or collaboration agreements with JRC.

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or y applying additional instrumentation?

Other components than vehicle tanks can be tested after some (minor) modifications in the mechanical set up.

An upgrade of the facility is foreseen in 2009 order to increase the maximum static pressure from ca. 350 to ca. 800 bar.

Tests involving hydrogen / natural gas mixtures will be possible after some modifications.

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

JRC is highly interested in co-operating with both manufacturers and users, to help developing procedures for testing hydrogen storage systems for vehicles and contributing to standardisation.

Partner: KI

Facilities: - Spra

- Spray - Sphere
- Koper
- Vortex
- Minirut
- Channel
- Chamber
- Driver
- Torpedo
- Venting
- RUT 2200
- Globus
- High Pressure Jet Facility

Overview		4 3 1 3
Name	Spray	
Туре	Sprayer for liquid fuels	
Scale	full or large scale	
Experiments	Studies on critical energy initiation of o detonations, shock w	detonation in motor fuel - air clouds, heterogeneous wave interaction
Technical detai	ls	

Dimensions	length 15-20 m, semi-cylindrical fuel-air cloud up to 2000 m ³ .
Temperatures	ambient
Pressure	ambient
Media	liquid fuels with air
Special features	-
Further particulars	droplet size 50 mkm - 1 mm

Experiments-Equipment

Experiments	 experiments on critical energy of detonation initiation in motor fuel - air clouds investigations of heterogeneous detonation mechanisms experiments on shock wave interaction with burning clouds
Level of detail	integral
Instrumentation	temperature pressure velocity concentration integral heat
Schedule	preparatory work of experimental set-up to specific test series requires two weeks; 1 day is needed for preparation and conduction of one experiment in the series; 1 day is needed for processing of raw experimental data

Tools

standard software required for data acquisition system to convert analogous signals to digital form (ASCII or binary format)

Further particulars

Information for the preparation of integration

• Exchange of instruments and personnel

_

How many persons are needed to prepare/conduct experiments?

3-4 persons are needed to prepare/conduct experiments

What kind of movable equipment is available and could be shared?

Data acquisition system processed by accompanying service team (1-2 persons)

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

Experiments on heat transfer.

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Large scale experiments on turbulent combustion and detonation of liquid fuel spray, experiment on ignition and flame propagation limits .

Which additional equipment could enhance your results?

High-speed photography technique

Name	Sphere	
Туре	Semi-sphere for gaseous fuel air mixtures	
Scale	full or large scale	
Experiments	Studies on blast wave and thermal radiation parameters of gaseous deto	onation

Technical details

Dimensions	diameter 8m, semi- sphere for gaseous fuel air mixtures V=134 m3
Temperatures	ambient
Pressure	ambient
Media	gas fuels incl. hydrogen with air
Special features	large scale semi-sphere
Further particulars	

Experiments-Equipment

Experiments	studies on blast wave and thermal radiation parameters of gaseous detonation
Level of detail	integral
Instrumentation	gas temperature pressure gas composition thermal radiation fluxes velocity
Schedule	preparatory work of experimental set-up to specific test series requires one month; one day is needed for preparation and conduction of one experiment in the series; 1 day is needed for processing of raw experimental data
Tools	standard software required for data acquisition system to convert analogous signals to digital form (ASCII or binary format)
Further particulars	-

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

3-4 persons are needed to prepare/conduct experiments

What kind of movable equipment is available and could be shared?

Data acquisition system processed by accompanying service team (1-2 persons)

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Large or full scale experiments on turbulent combustion and detonation in open volume, thermal radiation effects.

Which additional equipment could enhance your results?

High-speed photography technique

Overview		Pressure gauges and photodiodes Big chamber
Name	Koper	Plastic cover Membrane Small chamber Spark
Туре	vented explosion chamber with semi- cylindrical volume	
Scale	full or large scale	10 m 2.7 m
Experiments	studies on turbulent c	ombustion and detonations, vented explosions

Technical details

Dimensions	small chamber 0.5m³, big chamber 17m³, semi-cylindrical volume length 10m, diameter 7.4m, volume 134 m³
Temperatures	ambient
Pressure	ambient
Media	gas fuels incl. hydrogen with air
Special features	system of volumes
Further particulars	large scale vented explosion chamber

Experiments-Equipment

Experiments	investigation of fuel-air detonation initiation mechanisms by turbulent jet of combustion products, combustion and detonation processes in a system of open and closed volumes.
Level of detail	integral
Instrumentation	gas temperature pressure gas composition velocity heat flux
Schedule	preparatory work of experimental set-up to specific test series requires 1-2 months; 1 – 2 days are needed for preparation and conduction of one experiment in the series; 1 day is needed for processing of raw experimental data
Tools	standard software required for data acquisition system to convert analogous signals to digital form (ASCII or binary format)
Further particulars	-

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

5-6 persons are needed to prepare/conduct experiments

What kind of movable equipment is available and could be shared?

Data acquisition system processed by accompanying service team (1-2 persons)

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

experiments on hydrogen distribution in closed and open volume

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Large scale combustion and detonation processes in a system of open and closed volumes

Which additional equipment could enhance your results?

High-speed photography technique

o ver men		Transducers ports		A-A
Name	Vortex	Flame	<u>1</u> <u></u>	Channel for vortex formation flow 50 mm
Туре	explosion chamber	formation channel		2 4 50 mm 2
Scale	medium scale	100 mm		
		Glass window	Combustion chamber	Membrane breaking unit
Experiments	studies on flame - vortex interaction, turbulent flame, igni	D=230 mm		500 mm High pressure chamber
	tar saisht harris, igin			

Technical details	
Dimensions	length 80cm, height 50cm, diameter 5cm
Temperatures	ambient
Pressure	0-1 bar
Media	combustible gas mixtures
Special features	optical window for high speed shadow photography
Further particulars	

Experiments-Equipment

Experiments	 experiments on flame - vortex interaction, investigations of turbulent flame structure, peculiarities of ignition-extinction phenomena microscopic to integral
Instrumentation	gas temperature pressure gas composition velocity high-speed shadow photography
Schedule	preparatory work of experimental set-up to specific test series requires 1-2 weeks; 1 – 2 hours are needed for preparation and conduction of one experiment in the series; 1 day is needed for processing of raw experimental data
Tools	standard software required for data acquisition system to convert analogous signals to digital form (ASCII or binary format)
Further particulars	-

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

1-2 persons are needed to prepare/conduct experiments

What kind of movable equipment is available and could be shared?

Data acquisition system processed by accompanying service team (1-2 persons)

To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

medium scale experiments on flame - vortex interaction, turbulent flame, ignition - extinction phenomena

Which additional equipment could enhance your results?

High-speed photography technique

Overview		328.5	328.5	312	500
Name	Minirut	Section #3	A Section #2	L7 B Section #1	C Section #(4-5)
		1 L1,P1 L2 L3,P2 * 1 X X X X			L9 P6 L10 P7 ● ● ● ●
Туре	system of	<u>s</u> 707	2.5 A		<mark>⊲</mark> C_
	channels	* - Ignition point	<u>A-A</u>	v ⊨ <u>B-B</u>	<u></u>
Scale	small scale	 Position of transducers Obstacles 		125	50
		- Visible zone	-> 50 <-	45	-> 50 <
Experiments	studies on	- Insert		50 <	
	turbulent combustions detor	nations and scal	ing effect		

Technical details Dimensions	length 1450mm, height 45mm, width 50mm
Temperatures	ambient
Pressure	0-1 bar
Media	combustible gas mixtures
Special features	optical window for high speed shadow photography
Further particulars	RUT facility geometry 1:50 of real size (50x45x1470 mm) with obstacles (BR=0.3-0.6)

Experiments-Equipment

Experiments	 experiments on flame acceleration investigations of DDT conditions scaling effect
Level of detail	microscopic
Instrumentation	gas temperature pressure gas composition velocity high-speed shadow photography
Schedule	preparatory work of experimental set-up to specific test series requires 1-2 weeks; 1 – 2 hours are needed for preparation and conduction of one experiment in the series; 1 day is needed for processing of raw experimental data
Tools	standard software required for data acquisition system to convert analogous signals to digital form (ASCII or binary format)
Further particulars	-

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?
1-2 persons are needed to prepare/conduct experiments
What kind of movable equipment is available and could be shared?
Data acquisition system processed by accompanying service team
To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

• To prepare promotion and specialisation

What features/possibilities would you like to promote? Scale effect experiments Which additional equipment could enhance your results? Digital high-speed photography technique

		560 560	1120	1120	960	960
Name	Channel					
Туре	Rectangular channel	#1 #2 Optical wind	#3	ections: #4 5280 mm	#5	#6
Scale	medium scale			5260 1111		

Experiments studies on turbulent combustions detonations and scaling effect

Technical details	
Dimensions	length 5280mm, height 80mm, width 80mm
Temperatures	ambient
Pressure	0-1 bar
Media	combustible gas mixtures
Special features	optical window for high speed shadow photography
Further particulars	channel could be filled with regular obstacles grid spaced by tube diameter, blockage ratio BR = 0.1, 0.3, 0.6, 0.9; tube is equipped with gas filling system and data acquisition system, spark/glow plug for ignition

Experim	ents-Eq	uipment
---------	---------	---------

Experiments	- experiments on flame acceleration
	- investigations of turbulent flow peculiarities
	- laminar and turbulent flames behaviour
	- investigations of DDT condition
	- scaling effect
Level of detail	microscopic
Instrumentation	gas temperature
	pressure
	gas composition velocity
	high-speed shadow photography
Schedule	preparatory work of experimental set-up to specific test series requires one month; 3-4 hours are needed for preparation and

conduction of one experiment in the series; 1 day is needed for processing of raw experimental data

Toolsstandard software required for data acquisition system to convert
analogous signals to digital form (ASCII or binary format)

Further particulars

Information for the preparation of integration

Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

1-2 persons are needed to prepare/conduct experiments

What kind of movable equipment is available and could be shared?

Data acquisition system processed by accompanying service team

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

• To prepare promotion and specialisation

What features/possibilities would you like to promote? *medium scale experiments on turbulent combustions detonations and scaling effect* Which additional equipment could enhance your results? *Digital high-speed photography technique*

Overview Name	Chamber
Туре	Rectangular channel (50x50x3400 mm BR=0.3, 0.6) joined with cylindrical chamber
Scale	medium scale
Experiments	studies on turbulent combustions and flame vortex - shock interaction

Technical details	
Dimensions	length 3400mm, height 50mm, width 50mm
Temperatures	ambient
Pressure	0-1 bar
Media	combustible gas mixtures
Special features	optical windows for high speed shadow photography
Further particulars	channel could be filled with regular obstacles grid spaced by tube diameter, blockage ratio BR = 0.3, 0.6; tube is equipped with gas filling system and data acquisition system, spark/glow plug for ignition

Experiments	- experiments on flame acceleration
	- flame vortex-shock wave interaction
	- laminar and turbulent flames behaviour
	- jet initiation of detonation
Level of detail	microscopic
Instrumentation	gas temperature pressure gas composition velocity high-speed shadow photography
Schedule	preparatory work of experimental set-up to specific test series requires 1-2 weeks; 1 – 2 hours are needed for preparation and conduction of one experiment in the series; 1 day is needed for processing of raw experimental data

Tools

standard software required for data acquisition system to convert analogous signals to digital form (ASCII or binary format)

Further particulars

Information for the preparation of integration

• Exchange of instruments and personnel

_

How many persons are needed to prepare/conduct experiments?

1-2 persons are needed to prepare/conduct experiments

What kind of movable equipment is available and could be shared?

Data acquisition system processed by accompanying service team

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

medium scale experiments on turbulent combustions and flame vortex - shock interaction

Which additional equipment could enhance your results?

Digital high-speed photography technique

Overview				2
Name	Driver			
Туре	cylindrical tube			
Scale	large scale			
Experiments	studies on turbul effects	lent combustions and deton	ations, scaling and venting	

Technical details	
Dimensions	internal diameter 174 mm, length 12 m
Temperatures	ambient
Pressure	0-3 bar
Media	combustible gas mixtures
Special features	fast opened membrane units (t=1 ms) to use two or three different mixtures
Further particulars	tube could be filled with regular ring shape obstacles grid spaced by tube diameter, blockage ratio BR = 0.1, 0.3, 0.6, 0.9; tube is equipped with gas filling system and data acquisition system, spark/glow plug for ignition

Experiments-Equipment

Experiments	 experiments on flame acceleration criteria
	 flame propagation and detonation transition through concentration gradient
	- DDT condition criteria
	 investigations of venting effect
	 investigations of scaling effect
Level of detail	microscopic to integral
Instrumentation	gas temperature pressure gas composition velocity
Schedule	preparatory work of experimental set-up to specific test series requires 3-4 weeks; 3 – 4 hours are needed for preparation and

conduction of one experiment in the series; 1 day is needed for processing of raw experimental data

Toolsstandard software required for data acquisition system to convert
analogous signals to digital form (ASCII or binary format)

Further particulars

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

2-3 persons are needed to prepare/conduct experiments

What kind of movable equipment is available and could be shared?

Data acquisition system processed by accompanying service team (1-2 persons)

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

Experiments on chemical kinetic and heat transfer.

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

large scale experiments on turbulent combustions and detonations, scaling and venting effects

Which additional equipment could enhance your results?

Name	Torpedo	
Туре	cylindrical tube	
Scale	large scale	A LILLUMMAN
Experiments	studies on turbulent combustions and detonations, scaling	g and venting effects

Technical details Dimensions	internal diameter 520 mm, length 34.5-50 m
Temperatures	ambient
Pressure	0-3 bar
Media	combustible gas mixture
Special features	connection unit with DRIVER facility.
Further particulars	tube could be filled with regular ring shape obstacles grid spaced by tube diameter, blockage ratio BR =0.1, 0.3, 0.6; tube is equipped with gas filling system and data acquisition system, spark/glow plug for ignition

Experiments-Equipment

Experiments	- experiments on flame acceleration criteria
	 flame propagation and detonation transition through concentration gradient
	- DDT condition criteria
	 investigations of venting effect
	 investigations of scaling effect
Level of detail	microscopic to integral
Instrumentation	gas temperature pressure gas composition velocity

Schedule	preparatory work of experimental set-up to specific test series requires one month;3-4 hours are needed for preparation and conduction of one experiment in the series; 1 day is needed for processing of raw experimental data
Tools	standard software required for data acquisition system to convert analogous signals to digital form (ASCII or binary format)

Further particulars

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

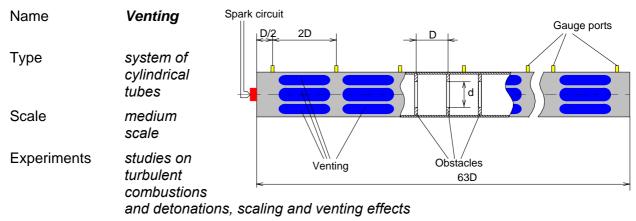
3-4 persons are needed to prepare/conduct experiments

What kind of movable equipment is available and could be shared?

Data acquisition system processed by accompanying service team (1-2 persons)

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?


Experiments on chemical kinetic and heat transfer.

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

large scale experiments on turbulent combustions and detonations, scaling and venting effects

Which additional equipment could enhance your results?

Technical details	
Dimensions	internal diameter46 mm and 92 mm, length 5796 mm
Temperatures	ambient
Pressure	ambient
Media	combustible gas mixtures
Special features	<i>tube could be filled with regular ring shape obstacles grid spaced by tube diameter, blockage ratio BR =0.1, 0.3, 0.6; tube is equipped with gas filling system and data acquisition system, spark/glow plug for ignition</i>
Further particulars	<i>tube could be filled with regular ring shape obstacles grid spaced by tube diameter, blockage ratio BR = 0.3, 0.6; lateral vents (venting ratio 20 and 40%)</i>

Experiments-Equipment	t
Experiments	 experiments on flame acceleration criteria under vented conditions
	- DDT condition criteria
	 investigations of venting effect
	 investigations of scaling effect
Level of detail	microscopic to integral
Instrumentation	gas temperature pressure gas composition velocity

Schedule	preparatory work of experimental set-up to specific test series requires 1-2 weeks; 1 – 2 hours are needed for preparation and conduction of one experiment in the series; 1 day is needed for processing of raw experimental data
Tools	standard software required for data acquisition system to convert analogous signals to digital form (ASCII or binary format)

Further particulars

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

1-2 persons are needed to prepare/conduct experiments

What kind of movable equipment is available and could be shared?

Data acquisition system processed by accompanying service team

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

medium scale experiments on turbulent combustions and detonations, scaling and venting effects

Which additional equipment could enhance your results?

High-speed photography technique

Overview		Experimental Ar	ea	
Name	RUT 2200		Acceleration Tube	Jet Generator
			ID=2200mm	
Туре	system of channels and chambers	L=63m	L=420m	
Scale	large scale			
Experiments studies on turbulent combustion and detonation				
Technical detai	Is			
Dimensions	cross – s	ection up to 9) m², length 420 m	

Temperatures	up to 100 ℃
Pressure	ambient
Media	hydrogen/air, hydrogen/air/steam
Special features	experiments under normal and elevated (up to 100 oC) initial conditions
Further particulars	tube could be filled with regular ring shape obstacles grid spaced by tube diameter, blockage ratio BR = 0.3, 0.6; lateral vents (venting ratio 20 and 40%)

Experiments-Equipment

Experiments	- flame acceleration propagation
	- DDT, and detonations in complex geometry at large scale
	- investigations of effect of uniform and non-uniform mixtures
	 investigations of hydrogen injection, distribution, and deliberate ignition
	 simulation of accidental conditions to test the operation of different equipment under pressure and thermal loading
Level of detail	microscopic to integral
Instrumentation	gas temperature pressure gas composition velocity thermal fluxes

Schedule	preparatory work of experimental set-up to specific test series requires 2-3 months; 3 – 4 days are needed for preparation and conduction of one experiment in the series; 2-3 days are needed for processing of raw experimental data
Tools	standard software required for data acquisition system to convert analogous signals to digital form (ASCII or binary format)
Further particulars	-

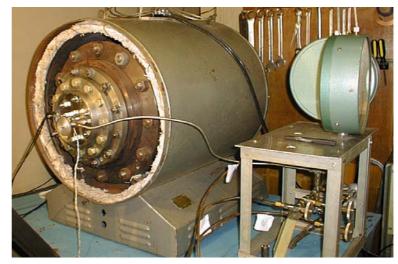
• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

5-6 persons are needed to prepare/conduct experiments

What kind of movable equipment is available and could be shared?

Data acquisition system processed by accompanying service team (2-3 persons)


• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

• To prepare promotion and specialisation

What features/possibilities would you like to promote? *large scale experiments on turbulent combustion and detonation* Which additional equipment could enhance your results?

Name	Globus
Туре	spherical bomb
Scale	medium scale
Experiments	studies on laminar combustion and turbulent deflagration

Technical details	
Dimensions	diameter 280 mm, volume 11.5 liter
Temperatures	up to 250°C
Pressure	up to 25 bar
Media	combustible gas mixtures
Special features	experiments under normal and elevated (up to 250°C, 25 bar) initial conditions
Further particulars	optical window

Experiments-Equipment

Experiments	- laminar flame propagation
	- laminar flame velocities measurements
Level of detail	microscopic
Instrumentation	gas temperature pressure
Schedule	preparatory work of experimental set-up to specific test series requires one week; 1 hour is needed for preparation and conduction of one experiment in the series; 2-3 hours are needed for processing of raw experimental data
Tools	standard software required for data acquisition system to convert analogous signals to digital form (ASCII or binary format)
Further particulars	-

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

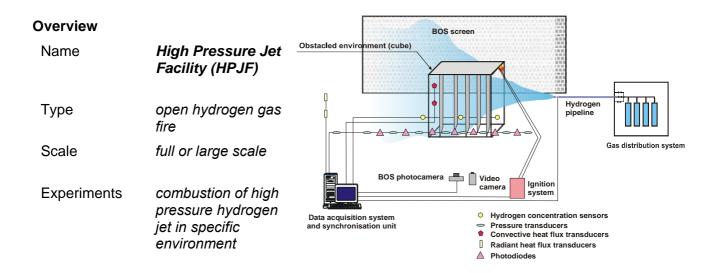
1 person is needed to prepare/conduct experiments

What kind of movable equipment is available and could be shared?

Data acquisition system

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?


Experiments on chemical kinetic and heat transfer.

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Small scale experiments on laminar combustion and turbulent deflagration

Which additional equipment could enhance your results?

Technical details	
Dimensions	cube 8 m ³ , hydrogen pipeline length 30m
Temperatures	ambient
Pressure	ambient
Media	hydrogen
Special features	pressure in hydrogen pipeline – up to 150 bar hydrogen release – up to 1 kg
Further particulars	cube volume can be filled with obstacles

Experiments-Equipment

Experiments	 investigation of high pressure hydrogen jet combustion in open and obstacled environments
Level of detail	integral
Instrumentation	gas temperature
	pressure
	gas composition
	velocity
	integral heat
	BOS photography

Schedule preparatory work of experimental set-up to specific test series requires 1-2 weeks; 1–2 hours are needed for preparation and

conduction of one experiment in the series; 3–4 hours is needed for processing of raw experimental data

Tools standard software required for data acquisition system to convert analogous signals to digital form (ASCII or binary format)

Further particulars

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

5-6 persons are needed to prepare/conduct experiments

What kind of movable equipment is available and could be shared?

Data acquisition system processed by accompanying service team (1-2 persons)

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

experiments on hydrogen distribution and combustion in open or obstacled volume at hydrogen release pressures up to 300 bar

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Scale effect experiments

Which additional equipment could enhance your results?

High-speed photography technique

Partner: TNO

- 20 litre vessel
- 500 litre vessel
- 1 m³ vessels
- 5 m³ vessel
- Gas explosion chamber
- IBBC Bunker
- FAST
- GFEF
- Large scale blast simulator
- Laboratory for ballistic research (LBO)
- Test Facility 3 (TF3)
- Large indoor rocket test stand

Pressure

Special features

Further particulars -

Media

Name	1 litre vessel	No.
Туре	closed bomb	Manufacture of the second
Scale	lab scale	1
Experiments	Closed bomb experiments, to measure explosion limits and ignition temperatures and energies	
Technical details	5	
Dimensions	1 litre	J
Temperatures	hot water bath for the wall	

various flammable gasses and inerts

-

Experiments – Equipment		
Experiments	Closed bomb experiments, to measure explosion limits and ignition temperatures and energies	
Instrumentation	gas temperature pressure gas composition	
Schedule	-	
Tools	-	
Further particulars	-	

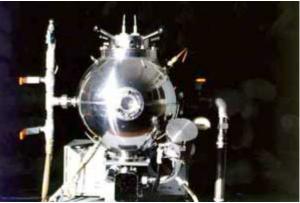
• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments? 1

What kind of movable equipment is available and could be shared?

Equipment easy to move

• To prepare filling possible gaps


What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Which additional equipment could enhance the results of your experiments?

Name	20 litre vessel
Туре	closed bomb
Scale	lab scale
Experiments	Closed bomb experiments, to measure explosion limits and ignition temperatures and energies

Technical details

Dimensions	20 liter
Temperatures	hot water bath for wall
Pressure	maximum static overpressure of 40 bar
Media	various flammable gasses and inerts
Special features	-
Further particulars	-

Experiments – Equipment

Experiments	Closed bomb experiments, to measure explosion limits and ignition temperatures and energies
Instrumentation	gas temperature pressure gas composition
Schedule	-
Tools	Kuhner data-acquisition software
Further particulars	-

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments? 1

What kind of movable equipment is available and could be shared?

Equipment easy to move

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

gas, dust or hybrid mixtures can be applied

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Which additional equipment could enhance the results of your experiments?

-

Name	500 litre vessel	
Туре	closed bomb	
Scale	lab/pilot scale	
Experiments	Closed bomb experiments, to measure explosion limits and ignition temperatures and energies	

Technical details	
Dimensions	500 liter
Temperatures	atmospheric temperature
Pressure	-
Media	various flammable gases and inerts
Special features	Flanges enable to install instruments and bursting disks or vent covers etc.
Further particulars	-

Experiments – Equipment

Experiments	Closed bomb experiments, to measure explosion limits and ignition temperatures and energies
Instrumentation	gas temperature pressure gas composition
Schedule	-
Tools	-
Further particulars	-

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments? 1

What kind of movable equipment is available and could be shared?

Equipment easy to move

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

gas, dust or hybrid mixtures can be applied

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Which additional equipment could enhance the results of your experiments?

-

Name	1 m ³ vessel	D
Туре	vessel (closed bomb)	
Scale	small scale	
Experiments	closed bomb experiments with - higher operating / initial pressure - other substances; for ex. pure oxygen - linked vessel systems (2 times	1m ³)

Technical details

Dimensions	cylindrical vessels of 0,97 m I.D. and a length of 1,05 m
Temperatures	atmospheric temperature
Pressure	maximum static overpressure of 20 and 100 bar
Media	gases and dust
Special features	Flanges enable to install instruments and bursting disks or vent covers etc.
Further particulars	-

Experiments – Equipment

Experiments The 1-m³ explosion vessels are cylindrical vessels capable to withstand a maximum static overpressure of 20 and 100 bar. This makes it possible to do experiments with higher operating pressures or explosions with pure oxygen instead of air. The front of the vessel is closed by a door, the rear by a blind flange. If necessary the blind flange can be replaced by other flanges to enable the testing of bursting disks, vent covers etc. With the two 1 m³ vessels also linked vessel experiments can be performed. The vessel is operated at room temperature.

As with the 5-m3 vessel, the 1-m3 explosion vessel can also be used to determine the efficiency of equipment and protective systems intended for use in potentially explosive atmospheres. These include explosion suppression devices, explosion detectors, and pressure resistant devices.

Instrumentation	gas temperature pressure gas composition
Schedule	-
Tools	The signals from the pressure gauges and thermocouples are transmitted to the SCADAS II Signal Conditioning and Data Acquisition System.
Further particulars	-

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

1

_

_

What kind of movable equipment is available and could be shared?

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

gas, dust or hybrid mixtures can be applied

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Which additional equipment could enhance the results of your experiments?

Technical details

Name	5 m³ vessel (gas/dust)
Туре	vessel (closed bomb)
Scale	medium scale
Experiments	test of equipment and protective systems intended for use in potentially explosive atmospheres

Dimensions	cylindrical 5 m³ vessel
Temperatures	room temperature
Pressure	maximum static overpressure of 15 bar
Media	gas and dust
Special features	Flanges enable to install instruments and bursting disks or vent covers etc.
Further particulars	-

Experiments – Equipment

Experiments	The 5-m ³ explosion vessel is used to determine the efficiency of equipment and protective systems intended for use in potentially explosive atmospheres. These include explosion suppression devices, explosion detectors, and pressure resistant devices.
	The 5-m ³ explosion vessel is a cylindrical vessel, capable to withstand a maximum static overpressure of 15 bar. Flanges enable to install instruments and bursting disks or vent covers etc The vessel is operated at room temperature.
Instrumentation	gas temperature pressure gas composition
Schedule	-
Tools	-
Further particulars	-

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

2

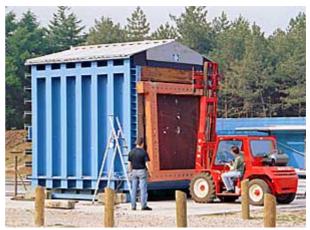
What kind of movable equipment is available and could be shared?

-

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

gas, dust or hybrid mixtures can be applied


• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Which additional equipment could enhance the results of your experiments?

-

Name	Gas Explosion Chamber (GEC)
Туре	cubic shaped vessel
Scale	large scale
Experiments	test constructions that can reduce or protect against explosion overpressures; venting devices and explosion resis

devices and explosion resistant constructions can be tested

Technical details

Dimensions	cubic shaped vessel of 36 m³ venting areas from about 2 to 5 m²
Temperatures	atmospheric temperatures
Pressure	maximum explosion overpressure of 1 bar
Media	gas
Special features	-
Further particulars	-

Experiments – Equipment

Experiments	The GEC is fitted with a gas supply and can be used to test constructions that can reduce or protect against explosion overpressures. Venting devices can be tested with venting areas from about 2 to 5 m ² . Explosion resistant constructions can be tested with a maximum explosion overpressure of 1 bar.
Instrumentation	gas temperature pressure gas composition
Schedule	-
Tools	The signals from the pressure gauges, blast pencils and thermocouples are transmitted to the SCADAS II Signal Conditioning and Data Acquisition System.
Eurthor portiouloro	

Further particulars -

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments? 2

What kind of movable equipment is available and could be shared?

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Which additional equipment could enhance the results of your experiments?

-

Name	IBBC Bunker
Туре	reinforced concrete bunker
Scale	large scale
Experiments	vented gas explosions

Technical details

Dimensions	<i>"kitchen" (20 m³) and "living room" (40 m³)</i>
Temperatures	room temperature
Pressure	P _{max} 0.35 bar
Media	gas
Special features	-
Further particulars	-

Experiments – Equipment

Experiments	The IBBC bunker was built to experiment with vented gas explosions in domestic applications. This reinforced concrete bunker has two chambers, which have the size and shape of a realistic kitchen (20 m ³) and living room (40 m ³). In the bunker, numerous venting experiments have been conducted. Openings in the walls of the bunker can be fitted with vent panels or brick walls in order to test their strength and venting efficiency.
Instrumentation	gas temperature pressure gas composition
Schedule	-
Tools	AutoReaGas [™] is a CFD software package that consists of two CFD codes: a gas explosion simulator and a blast simulator. Both codes are integrated in an interactive and user-friendly environment. The gas explosion simulator is capable of simulating the turbulent premixed combustion process in gas explosions. This process is the origin of blast effects. Given the blast source characteristics, the blast simulator

HySafe – Safety of Hydrogen as an Energy Carrier

is capable of computing the propagation of the blast wave in the vicinity of the explosion and the interaction with objects.

The gas dynamics of a gas explosion is simulated by the numerical solution of a full set of conservation equations, that constitutes a model for the gas dynamics, the turbulence and the fuel distribution. The propagation and interaction of blast with structures is simulated by numerical solution of conservation equations which constitute a model for inviscid gas dynamics. A Flux-Corrected Transport scheme is used to capture and preserve shocks.

Further particulars -

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

2

_

What kind of movable equipment is available and could be shared?

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Which additional equipment could enhance the results of your experiments?

Name	FAST (Flame Acceleration STudy)
Туре	Open air gas explosion facility
Scale	large scale
Experiments	Flame propagation and blast wave experiments of gas explosions in open air

Technical details

Dimensions	open field of approx. 70 x 70 m^2
Temperatures	atmospheric temperature
Pressure	-
Media	gas
Special features	-
Further particulars	-

Experiments – Equipment

Experiments	The FAST is a facility that enables a continuous monitoring of the flame propagation process in a gas explosion by pressure and temperature recording. Various models can be incorporated in the facility, such as a tunnel like structure or a geometric 3D grid of pipes.
Instrumentation	gas temperature pressure gas composition flame velocity (High speed) camera
Schedule	-
Tools	AutoReaGas is a CFD software package that consists of two CFD codes: a gas explosion simulator and a blast simulator. Both codes are integrated in an interactive and user-friendly environment. The gas explosion simulator is capable of simulating the turbulent premixed combustion process in gas explosions. This process is the origin of

HySafe – Safety of Hydrogen as an Energy Carrier

blast effects. Given the blast source characteristics, the blast simulator is capable of computing the propagation of the blast wave in the vicinity of the explosion and the interaction with objects.

The gas dynamics of a gas explosion is simulated by the numerical solution of a full set of conservation equations, that constitutes a model for the gas dynamics, the turbulence and the fuel distribution. The propagation and interaction of blast with structures is simulated by numerical solution of conservation equations which constitute a model for inviscid gas dynamics. A Flux-Corrected Transport scheme is used to capture and preserve shocks.

Further particulars -

Information for the preparation of integration

• Exchange of instruments and personnel

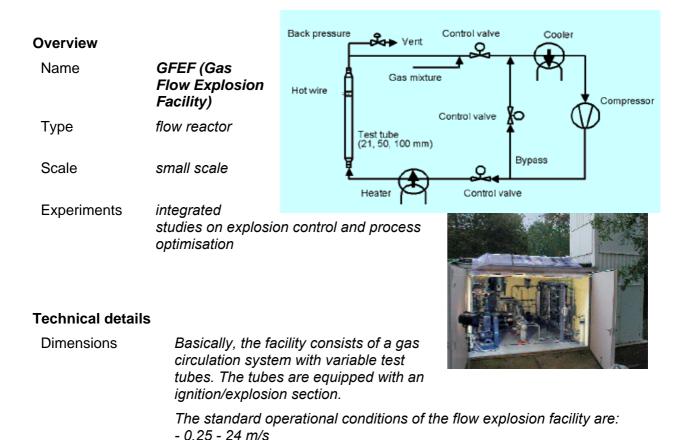
How many persons are needed to prepare/conduct experiments?

2

What kind of movable equipment is available and could be shared?

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?


various models can be tested, such as:

- small scale tunnel model:
- 4 segments, each 2 x 0.5 x 0.25 m in dimension
- 3D geometrical grids

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Which additional equipment could enhance the results of your experiments?

- Temperatures 25-300 °C
- Pressure up to 1.5 MPa
- Media various flammable gases and inerts

- 21, 50 and 100 mm tube diameter

- Special features
- Further particulars -

Experiments – Equipment

Experiments

A unique gas flow explosion pilot plant for integrated studies on explosion control and process optimisation. The conditions in the tube with respect to temperature, pressure and flow rate can be set similar to those in the plant. Explosion limits for example, can thus be determined under actual circumstances encountered in industrial processes.

The gas flow explosion facility enables research into the effect of the following parameters on the indices that are related to the formation, ignition and deflagration characteristics of flammable gas mixtures in chemical and petrochemical installations:

- temperature and pressure,
- flow rate and flow direction,
- mixture composition,

	- catalytic materials, - source of ignition and ignition strength, - tube dimensions, and, - obstacles within the flow or dead zones.
	The facility can also be used for more complex and fundamental studies as for example the effect of flow instabilities and precompression on deflagration characteristics and deflagration to detonation transition phenomena. Techniques like laser Doppler interferometry are available to characterise turbulence levels.)
Instrumentation	gas temperature (heat camera) pressure gas composition flame velocity Techniques like laser Doppler interferometry are available to characterise turbulence levels
Schedule	-
Tools	-
Further particulars	-

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

1

-

_

-

What kind of movable equipment is available and could be shared?

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Which additional equipment could enhance the results of your experiments?

Name	Large scale Blast simulator
Туре	long tube
Scale	medium scale
Experiments	blast wave response in atmosphere

Technical details

Dimensions	overall length 63 m; driver section 3-m long, 0.3 m diameter expanding to 1-m and 2-m diameter
Temperatures	atmospheric temperature
Pressure	max. peak overpressure 200 kPa (side-on) at 1-m diameter sect. max. peak overpr. 60 kPa (side-on)/120 kPa (face-on) at tube end. max positive phase duration 60 ms.
Media	air
Special features	-
Further particulars	-

Experiments – Equipment

Experiments	studying blast wave/structure interactions
	target load and structural response measurements
	testing of window panes of different type and dimensions to determine explosion resistance capabilities
	determination of the dynamic behaviour of brick walls
	blast hardness trails on blast-resistant walls and doors
	blast hardness trails on scale models and small full scale models (gas masks)
	studying the effectiveness of blast walls in reducing impulse noise from large caliber weapons
Instrumentation	pressure transducers, strain gauges and accelerometers for target load and structural response measurements
	high-speed camera's for studying failure modes

Tools For the numerical simulation of three-dimensional blast-object interaction, the computational fluid dynamics code BLAST-3D has been developed. This code solves the Euler equations, which describe inviscid compressible flow. The Flux-Corrected Transport scheme is used for optimum description of shocks and contact discontinuities. The code has the capability to calculate the pressure-, density-, and temperature-distribution around objects and to display velocity vector plots of the flow field. The code is also available as a sub-routine in the code AutoReaGas[™], which is used to simulate vapour cloud explosions and the explosion blast propagation in arbitrary environments.

Further particulars -

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

2

What kind of movable equipment is available and could be shared?

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Which additional equipment could enhance the results of your experiments?

Name	Laboratory for Ballistic Research (LBO)	.ast
Туре	internal firing ranges and a massive target bunker	-
Scale	medium scale	
Experiments	In the target bunker and large calibre firing range, kinetic energy projectiles can be fired at targets.	

Technical details	
Dimensions	-
Temperatures	-
Pressure	The target bunker is designed and proven to withstand detonations of up to 25 kg of high explosives.
Media	-
Special features	The maximum attainable velocity is 2500 m/s for a 0.5-kg launch package.
Further particulars	-

Experiments – Equipment

Experiments	In the target bunker and large caliber firing range, kinetic energy projectiles up to and including 40 mm can be fired at targets that may contain explosives. Fragmenting ammunition up to 76 mm and weapon systems up to 105 mm can be evaluated.
	The target bunker is designed and proven to withstand detonations of up to 25 kg of high explosives. In addition to standardized guns and accelerators, the laboratory has 29, 50 and 78 mm laboratory powder guns available. The maximum attainable velocity is 2500 m/s for a 0.5- kg launch package. A vacuum target chamber is available for studying material properties under impact conditions.
Instrumentation	The experimental facilities are extensively instrumented to facilitate data acquisition and analysis.
Schedule	-
Tools	-
Further particulars	-

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

What kind of movable equipment is available and could be shared?

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

impact of fragments on fuel tanks or cylinders can be studied

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Which additional equipment could enhance the results of your experiments?

-

Name	Test Facility 3 (TF3)	
Туре	H2/O2 igniter test facility	
Scale	full scale	
Experiments		rs (including acoustic igniters), combustors and other hydrogen (or oxygen) such as for developments in ,

Technical details

Dimensions	The TF3 has a test unit which is 4 by 6 meters and 2.5m tall.
Temperatures	The TF3 operates at ambient temperature
Pressure	The TF3 can deliver pressures from 0-220 bar with an increase to 300 bar possible
Media	hydrogen, oxygen, nitrogen
Special features	TF3 can provide high mass flow rates of hydrogen and oxygen in very wide pressure ranges. The hydrogen storage is 240 n-m³, oxygen storage is 240 n-m³.
Further particulars	TF3 has a versatile automatic control and data acquisition system that can record events at high frequencies. Standard measurements are measurements of pressure, temperature, and force. Additional measurements (e.g. spectroscopic measurements) are possible. Normal video recording of test runs is standard, high speed cameras are available for special test runs.

Experiments – Equipment

Experiments This facility is in operation for experimental propulsion tests. The performance of the Vinci motor igniter (H2/O2) has been tested using this facility. The TF3 is equipped with a gas supply system which can supply oxygen, hydrogen and nitrogen with feed pressures up to 22 MPa. The maximum obtainable mass flow rates for the Vinci test set up and other relevant characteristics are 100, 20 and 100g/sec respectively. Instrumentation gas temperature thermocouples, thermographic camera piezoelectric, piezoresistance pressure gas composition mass spectrometer velocity optical

	force/thrust gas density	piezoelectric Schlieren camera
Schedule	Between 1-4 weeks for week for execution of re	preparation of new experiments and 2 days-1 peat experiments.
Tools	TNO developed SMART software (Signal Modification Analysing and Reduction Tool) for data interpretation . MASTER database for recording/tracking instrumentation calibrations ensuring a high precision level.	
Further particulars	fully computer controlled	AQ PC system with 64 channels. The TF3 is d and is suitable for executing hydrogen sociated medium-high risk. Instrument rmed in-house.

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

Minimum of 2 persons for preparation and execution of experiments.

What kind of movable equipment is available and could be shared?

None easily

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

The TF3 has a flexible set-up and is designed for a wide range of experiments with varying set-ups and instrumentation.

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

A well equipped workshop is present on site for the performance of any required repairs/modifications to the facility. The TF3 has a high H2 mass flow with the possibility of conducting experiments involving hydrogen ignition.

Which additional equipment could enhance the results of your experiments?

_

Name	Large Indoor Rocket Test Stand	
Туре	rocket test facility	
Scale	full scale	
Experiments	Used for testing (large) rocket motors, ramjets, ducted rockets and for special activities, like combustion research,	

simulation of aerodynamic heating, or base pressure measurements on scaled-down rockets, launchers or boosters.

Technical details

Dimensions	tunnel section dimensions: 4x3.5x30 m			
Temperatures	ambient to 2000 K			
Pressure	0-70 bar			
Media	hydrogen, oxygen, nitrogen, (dry) air, methane, ethylene, additional gases possible			
Special features	gas supply o	details:		
Further particulare	Hydrogen Oxygen Nitrogen Air Methane	Flow Rate (kg/s) 0.05 1.6 0,06 10 0.3	Storage Capacity (kg) 2.5 100 10 900 16	Pressure (MPa) up to 7 MPa up to 7 MPa up to 20 MPa up to 7 MPa up to 7 MPa
Further particulars	ratios. At the	e same time to to ntrolled. A heate	nd other gases in preci otal mass flow rate and r allows heating of air,	pressure can be

Experiments – Equipment

Experiments	The indoor test facility is primarily designed for static firing of tactical missile rocket motors to assess the service lifetime of rocket motors.	
Instrumentation	gas temperature pressure gas composition	thermocouples, thermographic camera piezoelectric, piezoresistance mass spectrometer

	velocity force/thrust gas density	optical piezoelectric Schlieren camera
Schedule	experiments is dependa	paration, conduction, interpretation of nt on the type of experiment and the data ays preparation and 2 days interpretation
Tools	Reduction Tool) for data	software (Signal Modification Analysing and interpretation. MASTER database for mentation calibrations ensuring a high
Further particulars	up to 40 dB. Active ven Data-acquisition of thrus 100 channels up to 100	of 10 kg TNT equivalent. Sound level reduction ting system, toxic gases detection possible. at, pressure and temperature is feasible with: kHz (HP), 10 channels up to 1 MHz (NI) or 100 (NI). High speed video recording. Instrument rmed in-house.

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

Minimum of 2 persons for preparation and execution of experiments.

What kind of movable equipment is available and could be shared?

None easily

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

With modifications this facility can be used for performing high risk tests on hydrogen systems and parts thereof (valves, regulators...).

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

A well equipped workshop is present on site for the performance of any required repairs/modifications to the facility.

Which additional equipment could enhance the results of your experiments?

Partner: UNIPI

Facilities: - CVE - HPBT

Name	CVE
Туре	Vented room
Scale	large scale
Experiments	studies on vented explosions

Technical details

Dimensions	27 m ³ vented room
Temperatures	-
Pressure	maximum design overpressure 200 mbar
Media	hydrogen-air and methane-air mixtures
Special features	the size of the camber allow to simulate real ambient behaviours in case of explosion and to extrapolate the minimum safety value for the vent area as a function of expected hydrogen concentration
Further particulars	 (a) two side of the chamber entirely covered with panes of glass (upper and one lateral sides) in order to view and record the flame's shape propagation (b) variable vent area (c) variable number and location of the ignition points (d) variable number of concentration measurement points

Experiments - Equipment

Experiments hydrogen-air atmospheres vented explosion with uniform or non uniform initial condition; some test variables are (1) vent area; (2) hydrogen concentration; (3) number and location of ignition points (we have eight different ignition points inside the CVE)

Instrumentation	INSTRUMENT TYPE	N. OF ITEMS	MEASURING PRINCIPLE	RANGE	OUTPUT	MAXIMUM ERROR
	Flow meter	1	Turbine	6-100 Nm³/h	0.4-7 Hz	1.5 % of the range
	Flow meter	1	variable area	0-19 NI/sec	4-20 mA	0.8 % of the range
	Concentration analyser	6	Thermal conductibility	0-20 %vol.	4-20 mA	3 % of the range
	Pressure transducer	3	Piezoelectric	0-5 bar	4-20 mA	0.3 % of the range
	Digital camera	2		25 fps		

Schedule

the time needed for preparation of experiments is about 1 day;

the time needed for conduction of experiments is about 30 minutes (aerosol immission 10 minutes; gas immission 10 minutes; a few cycle of gas concentration measurements 10 minutes);

the time needed for interpretation of experiments is about 1 hour (assembly and analysis of digital camera's recordings, interpretation of pressure transducer's data, extrapolation of the correlation between explosion pressure and vent area, and hydrogen concentration data)

Tools general labs software

-

Further particulars

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

To prepare/conduct experiments only 3-5 persons are needed

What kind of movable equipment is available and could be shared?

All measurement devices and instrumentation (pressure transducers, flow meter, concentration analyser and so on)

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or y applying additional instrumentation?

In order to perform a comparison between flammable gases, besides hydrogen vented explosions in the CVE we could carry out also methane-air vented explosions (modification of the gas concentration analyser's calibration curve needed).

In addition we could carry out also study/check on the safety of other hydrogen applications: by introducing an element in the CVE (hydrogen sensor, fuel cell, etc.) we can measure hydrogen leakages, pressure waves generated in case of explosion, and so on.

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

The exchange of personnel between the partners or the employee of person from other University

The production of spreading material, in particular explosion behaviour movies.

Which additional equipment could enhance the results of your experiments?

With specific concentration measurement devices we could carry out also explosions of hydrogen mixed to methane atmospheres.

Overview

Name	HPBT	
Туре	Pipeline	5
Scale	large scale	-
Experiments	Study of hydrogen release and jet-fire from pipelines and calibrated holes.	

Technical details

Dimensions	60 m pipeline 12 m³ storage tanks
Temperatures	ambient

Pressure maximum pressure allowed 10 bar

-

Media pure hydrogen

Special features

- Further particulars *It is possible to modify the following parameters:*
 - (1) internal pressure (max 10 bar)
 - (2) diameter of release hole (max 1.5 inches)
 - (3) angle of release

Experiments - Equipment

Experiments

hydrogen release into free air and jet-fires.

Instrumentation	INSTRUMENT TYPE	N. OF ITEMS	MEASURING PRINCIPLE	RANGE	OUTPUT	MAXIMUM ERROR
	Thermocouple type K	10	Seebeck effect	0 - 800 °C	4-20 mA	0.1 % of the range
	O2 Concentration analyser	15	Catalytic sensor	0-30 %vol.	4-20 mA	1.5 % of the range
	H2 Concentration analyser	3	Catalytic sensor	0-100 %vol.	4-20 mA	1.5 % of the range
	Pressure transducer	6	Piezoelectric	0-10 bar	4-20 mA	0.3 % of the range

Schedulethe time needed for preparation of experiments is about 1 day;
the time needed for conduction of experiments is about 60 minutes
(hydrogen immission 40 minutes; set of instrumentation 10 minutes;
release [and eventual jet fire] 10 minutes);
the time needed for interpretation of experiments is about 1 hour
general labs softwareTools

Further particulars

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

To prepare/conduct experiments only 3-5 persons are needed

What kind of movable equipment is available and could be shared?

All measurement devices and instrumentation (pressure transducers, concentration analyser and so on)

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or y applying additional instrumentation?

In order to perform a comparison between flammable gases, we could carry out also methane-air blends.

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

The exchange of instrumentation between the partners or the employee of person from other University

Which additional equipment could enhance the results of your experiments?

With specific measurement devices we could study better the jet-fire behaviour.

Partner: WUT

Facilities:- WUT Detonation Channel
- WUT Detonation Tube
- WUT 1.25 m³ Explosion Bomb

Overview		
Name	WUT Detonation Channel	
Туре	square cross- section channel	
Scale	lab scale	
Experiments		grations, detonations, ation, mitigation of detonations

Technical details

Dimensions	Detonation channel consists of a 1 m long booster and 8 m long square cross-section channel with internal dimensions 110×110 mm
Temperatures	room initial temperature
Pressure	up to 0.1 MPa initial pressure
Media	hydrogen, air, nitrogen, oxygen, argon, helium, carbon dioxide
Special features	The booster is filled with the oxy-acetylene stoichiometric mixture, which ignited, by a 1 J electric spark rapidly detonates initiating in turn detonation in the acceptor mixture in the main channel. A number of piezo-electric pressure transducers are fitted into the channel to monitor detonation and shock propagation. An X-band radar Doppler unit is also used for continuous monitoring of the detonation velocity. The Doppler unit is located at the end of the channel.

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

At least 2 people are needed to prepare/conduct experiments

What kind of movable equipment is available and could be shared?

Microwave Doppler anemometer and high speed data acquisition system could be shared

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

High speed visualization of deflagrations and detonations could be performed in this facility after applying high speed digital camera (not available).

Chemical reaction progress visualization could be performed after applying PLIF instrumentation (not available).

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Experiments conducted on the facility could be used for validation of numerical codes related to gas detonations: in particular the validation of detonation initiation, DDT, propagation in obstructed channels and mitigation, using following results:

- Pressure profiles, continuous velocity record, schlieren pictures for unsteady cases of detonation mitigation by inert gas pockets
- pressure profiles, velocity record, schlieren pictures for hydrogen-air and hydrogen-oxygen detonation propagation,
- pressure profiles for experiments with detonation initiation by incident shock wave

Which additional equipment could enhance the results of your experiments?

-

• Website presentation

Additional material to be presented on the HySafe Website

Pdf files of the articles:

Dąbkowski A., Kozak A., Teodorczyk A.:The Initiation of Gaseous Detonations in H_2 - O_2 Mixtures by Incident Shock Wave

P.Buraczewski, A.Dąbkowski, A.Kozak, A.Teodorczyk: The Influence of Inert Gas Pockets on Propagation of Gaseous Detonations

Name	WUT Detonation Tube
Туре	circular cross-section tube
Scale	lab scale
Experiments	studies on hydrogen fast deflagrations, detonations, DDT, explosion initiation, mitigation of detonations

Technical details

Dimensions	Detonation tube consists of a 1 m long booster and 6 m long circular cross-section (2 sections 2 m long and 2 sections 1 m long connected by flanges) tube with internal diameter of 140 mm
Temperatures	room initial temperature
Pressure	up to 0.1 MPa initial pressure
Media	hydrogen, air, nitrogen, oxygen, argon, helium, carbon dioxide
Special features	The booster is filled with the oxy-acetylene stoichiometric mixture, which ignited, by a 1 J electric spark rapidly detonates initiating in turn detonation in the acceptor mixture in the main channel. A number of piezo-electric pressure transducers are fitted into the tube to monitor detonation and shock propagation. An X-band radar Doppler unit is also used for continuous monitoring of the detonation velocity. The Doppler unit is located at the end of the tube.

Experiments – Equipment

Experiments	studies on hydrogen fast deflagrations, detonations, DDT, explosion initiation, mitigation of detonations by diffraction, heat and momentum losses, initiation of detonation		
Level of detail	-		
Instrumentation	pressure velocity flame luminosity flame position visualization	piezoelectric microwave Doppler anemometer photodiodes ion probes Schlieren instrumentation	
Schedule	operational any time		
Tools	in-house high speed da	ata acquisition system with software	

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

At least 2 people are needed to prepare/conduct experiments

What kind of movable equipment is available and could be shared?

Microwave Doppler anemometer and high speed data acquisition system could be shared

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

High speed visualization of deflagrations and detonations could be performed in this facility after applying high speed digital camera (not available).

Chemical reaction progress visualization could be performed after applying PLIF instrumentation (not available).

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Experiments conducted on the facility could be used for validation of numerical codes related to gas detonations: in particular the validation of detonation initiation, DDT, propagation in obstructed channels and mitigation, using following results:

- Pressure profiles, continuous velocity record, schlieren pictures for unsteady cases of detonation mitigation by inert gas pockets
- pressure profiles, velocity record, schlieren pictures for hydrogen-air and hydrogen-oxygen detonation propagation,
- pressure profiles for experiments with detonation initiation by incident shock wave

Which additional equipment could enhance the results of your experiments?

Website presentation

Additional material to be presented on the HySafe Website

Pdf files of the articles:

Dąbkowski A., Kozak A., Teodorczyk A.:The Initiation of Gaseous Detonations in H_2 - O_2 Mixtures by Incident Shock Wave

P.Buraczewski, A.Dąbkowski, A.Kozak, A.Teodorczyk: The Influence of Inert Gas Pockets on Propagation of Gaseous Detonations

Name	WUT 1.25 m ³ Explosion Bomb
Туре	near spherical chamber
Scale	lab scale
Experiments	studies on hydrogen ignition, flame propagation and quenching

Technical details

Dimensions

Temperatures room initial temperature

Pressure up to 0.1 MPa initial pressure

Media hydrogen, air, nitrogen, oxygen, argon, helium, carbon dioxide

Special features

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

At least 2 people are needed to prepare/conduct experiments

What kind of movable equipment is available and could be shared?

Microwave Doppler anemometer and high speed data acquisition system could be shared

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

High speed visualization of deflagrations and detonations could be performed in this facility after applying high speed digital camera (not available).

Chemical reaction progress visualization could be performed after applying PLIF instrumentation (not available).

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Experiments conducted on the facility could be used for validation of numerical codes related to gas detonations: in particular the validation of detonation initiation, DDT, propagation in obstructed channels and mitigation, using following results:

- Pressure profiles, continuous velocity record, schlieren pictures for unsteady cases of detonation mitigation by inert gas pockets
- pressure profiles, velocity record, schlieren pictures for hydrogen-air and hydrogen-oxygen detonation propagation,
- pressure profiles for experiments with detonation initiation by incident shock wave

Which additional equipment could enhance the results of your experiments?

-

• Website presentation

Additional material to be presented on the HySafe Website

Pdf files of the articles:

Dąbkowski A., Kozak A., Teodorczyk A.:The Initiation of Gaseous Detonations in H_2 - O_2 Mixtures by Incident Shock Wave

P.Buraczewski, A.Dąbkowski, A.Kozak, A.Teodorczyk: The Influence of Inert Gas Pockets on Propagation of Gaseous Detonations

Annex II – Compilation of descriptions of devices and instrumentation

Partner	Devices	
CEA	- Particle Image Velocimetry (PIV)	277
	- Laser Doppler Velocimetry (LDV)	
	- Laser Induced Fluoroscence (LIF)	
	- Hot Wire Anemometer	
	- Binary Gas Analyser	
	- Thermal Conductivity Gauge	
	- Quadrupole Mass Spectrometer	
	- Mass Flow Controllers	
Fh-ICT	- Field-emission Scanning Electron Microscope	286
111101	- X-Ray Diffractometer	
	- Fast Online Spectroscopy	
	- IR High Speed Camera with syncronized Filterwheel	
	- High Speed Camera Systems	
	- Fast Mass Spectroscopy	
	- Hydrogen Measurement System	
	- 3-axis Positioning System	
	- Gas Mixing Unit	
	- 6MPa Autoclave	
		290
FZJ	- Hydrogen analyser	
	- Pyrometer	298
INASMET	- Explosion effects measurement devices (expansive waves)	299
	- Thermal conductivity analyser	
INERIS	- Turbulence probe	301
	- Ionisation probe	302
	- Fast optic pyrometer	303
	- Pressure sensors	304
JRC	- Gas Reaction Controller	305
	- Gravimetric Analyser	
	- Volumetric Sorption & Thermal Desorption Analyser	
KI	- Pressure Transducer, Model D25	308
	- Pressure Transducer, Model PCB 113A	
	- Pressure Transducer, Model Kistler 701A	
	- Heat Flux Transducer, Model TPI-2M	
	- Heat Flux Transducer, Model RRC KI LICHR	
	- Light Flux Transducer, Model FD-10GA	

	- Schlieren optical system, Model IAB-451	
TNO	- IR Gas Analyzers	
	- H ₂ Gas Analyzers	
	- O ₂ Analyzers	
	- Pressure Transducers	318
	- Free Field Blast Transducers	
	- Displacement Transducers	
	- Acceleration Transducers	
	- Signal Conditioning and Data Acquisition Systems	
UNIPI	- SMART 3 H2 sensor	
WUT	- Microwave Radar	
	- PCB pressure transducers	
	- Photodiodes	
	- Ion Probe	
	- Schlieren optical system	
	- Rapid Compression Machine (RCM)	

Name	Particle Image Velocimetry (PIV)
Туре	Laser based optical diagnostic tool used to study fluids flows
Application	Characterization of unsteady and turbulent flow-field by measuring velocity or turbulence

Technical details

Description

Non-intrusive whole-field-flow technique providing real-time velocity maps in a cross-section of a flow. Measurement system includes: CCD camera, laser and micro size particles generator.

Velocity range: 0 to supersonic

- CCD Camera

Camera 1: HiSense MkII active pixels: 1024x 1344 pixel pitch: 6.45 x 6.45 µm camera bit resolution: 12-bit frame rate: 5.6 Hz double frame

HiSense Mk II camera

Camera 2: Flow grabber double image 700 camera

active pixels: 768x 480 pixel pitch: 13.6 x 11.6 µm camera bit resolution: 12-bit frame rate: 15 Hz double frame

- Laser: continuum powerlite Nd:YAG pulsed laser wavelength: 532 nm average power: 25MW energy of one pulse: 200mJ duration of one pulse: 8ns

- Particle generator

fluid: Safex standard mean particle diameter : 1μm size : 340 (L) x 170(D) x145(H) (mm) fog generation: 325m³/min (corresponding to a range of sight of 0.5 m in a room of 5 x 8 x2.5 m)

Particle generator

timer: fog generation period can be pre-set from 3 to 90 seconds with pauses of 15 seconds to 10 minutes

- Traverse system

computer controlled 3-D traversing range(XxYxZ): 610 x610x610 (mm) speed: 25 mm/sec resolution: 6.25µm lift capacity: 60 kg dimensions in mm(WxLxH): 1150 x1150x1330

Dimensions / weight / mobility

- Temperature rangeAmbient temperature
- Pressure range Atmospheric pressure
- Media Gas or liquid flows
- In-house/commercial Commercial (Dantec Inc.)

Overview

Name	Laser Doppler Anemometry (LDA)	
Туре	Laser based optical measurement technique	
Application	1D and 2D point measurement of velocity and turbulence distribution in both free flows and internal flows	

Technical details

Description	Non-intrusive, high temporal and spatial resolution, no need for calibration and the ability to measure in reversing flows. Measurement system relies on a use of a laser and micro size particles generator.
	Velocity range: zero to supersonic
	- Iaser: Argon (Coherent Innova 300)
	average power: 8W wavelength: 514.5 nm for vertical beam (green) and 488nm for horizontal beam (blue)
	- Optical system: probe diameter: 60mm focal length: 1200mm (500 – 800nm) beam separation at sending lens:75 mm gaussian beam diameter at sending lens: 1.35 mm
	number of fringes: 36 measurement volume: dx= 9.12mm and dy=0.29mm
Dimensions / weight / mobility	
Temperature range	Ambient temperature
Pressure range	Atmospheric pressure
Media	Gas or liquid flows
In-house/commercial	Commercial (Dantec Inc.)
References	

Name	Laser Induced Fluorescence (LIF)
Туре	laser based non-intrusive whole-field concentration imaging system
Application	To acquire instant global concentration field information of flow

Technical details	
Description	Species specific method in which flow is marked with a fluorescent dye and laser beam is tuned to the absorption line of the species and subsequently images are recorded with a CCD camera with high spatial and temporal resolution.
	- fluorescent dye: aceton
	- Camera: HiSense Mk II (cf: PIV)
	- Laser: Continuum powerlite (cf PIV) with wavelength: 266 nm
	- Filter: 450 nm (short pass camera filter for aceton dye)
Dimensions / weight / mobility	
Temperature range	Ambient temperature
Pressure range	Atmospheric pressure
Media	Gas or liquid flows
In-house/commercial	Commercial (Dantec Inc.)
References	

Name	Hot wire anemometer
Туре	Multi-channel constant temperature anemometer(CTA)
Application	Point measurement of velocity and turbulence distribution in gas flows

Technical details

Description

The CTA measures velocity at a point and provides continuous velocity time series, which can be processed into amplitude and time-domain statistics. Examples are mean velocity, turbulence intensity, higher order moments, auto-correlations and power spectra.

- MiniCTA: model 54N80

number of CTA channels: 8 max. output voltage 5 volts frequency response: 10 kHz

Multichannel CTA system

-Cable-equipped probe: 55P16

sensor material: Pt-plated tungsten

cable length: 1 m max. ambient temperature: 120°C sensor resistance: approx. 3.5 ohm (at 20°C) sensor dimensions: diameter = 5µm, length = 1.2 mm

Dimensions / weight / mobility LxWxH

LxWxH: 28x30x6(cm) / 1.25 kg / yes

Temperature range

Pressure range

Media Gas flows

In-house/commercial Commercial (Dantec Inc.)

Overview

Name	Binary Gas Analyser (model 542)
Туре	Programmable thermal conductivity method for detecting the concentration of one gas in another
Application	All kind of measurements where concentration of one gas in another has to be acquired (ex. hydrogen or helium in air)

Technical details

Description	The analyser measures the sample content of a sample/reference mixture by comparing the thermal conductivity of the mixture with that of a reference
	resolution: 0.5% or better
	accuracy: $\pm 2\%$ or range
	response time : 90% in 20 secs
	sample temperature: 0 – 40°C
Dimensions / weight / mobility	534 W x 164 H x 300 D mm / 12 kg / yes
Temperature range	-15 to +50°C (ambient temperature)
Pressure range	1 bar G (min) – 3 bar G (max) sample or reference inlet pressures
Media	Gas
In-house/commercial	Commercial (Systech Instruments)

Name Thermal Conductivity Gauge (model: TCG 3880Pt)

- Type Thin-film-thermopile conductivity sensor based on silicon technology
- Application Gas type measurement (measurement of thermal conductivity, binary gasmixture composition measurement and measurement of one gas concentration in other gas etc.) and vacuum measurements.

Technical details

Description Measurement principle relies on the decrease in effective thermal resistance between the sensitive area of the sensor and the ambient, caused by the thermal conductance of the surrounding gas.

time constant: 9ms(in air), 36ms(in vacuum)stability: 100ppm(short term), 1000ppm (long term)thermopile resistance: $55 k \Omega$ thermal temperature coefficient: 0.05 %/Ksensor ambient temperature: $-196^{\circ}C(min)$, $240^{\circ}C(max)$ heater maximum temperature: $250^{\circ}C$

cabling

After cabling

Dimensions / weight / mobility diameter 9.13 mm

Temperature range

Pressure range

Media Gas

In-house/commercial Commercial (Xensor Integration_{bv})

Name	Quadrupole Mass Spectrometry (QMS)
Туре	quadrupole partial pressure analyser

Application

gas analysis

Gas sampling system

Technical details

Description	The QMS gas analysis system measures the partial pressures of gases in a mixture. A gas sampling system is attached to acquire the gas samples. sensor model: H100M sensor length (vacuum side): 26.4 cm detector type: electron multiplier (EM) /Faraday cap (FC) mass range: 1 – 100 amu sensitivity (amps/ torr): 10 ⁴ (FC) and 100 (EM) max. sensor operating temperature: 250°C (FC), 100°C (EM) max. operating pressure: 10 ⁻⁴ torr (EM)
Dimensions / weight / mobility	-
Temperature range	20°C – 50°C (ambient operating temperature)
Pressure range	
Media	Gas
In-house/commercial	Commercial (INFICON Inc)
References	

Name	Mass Flow Controllers
Туре	Thermal mass flow sensor for gas flow control and measurements
Application	All kind of measurements where it is required to provide controlled flow rates of gases

Technical details

l'échnical détails		
Description	The heart of these system is the thermal mass flow sensor, which produces an electrical output signal as a function of flow rate.	
	rangeability: 50:1 stability: less than ±0.5% of rate per year	
	Injection device 1: model : 5850S response time: 1sec	
	full scale : 18NL/Min operating scale: 0.36NL/Min±10.7%≤Q _v ≥18NL/Min±0.9%	
	Injection device 2:	
	model : 5853S response time 3 sec full scale : 700NL/Min operating scale: 14NL/Min±10.7%≤Q _v ≥700NL/Min±0.9%	
Dimensions / weight / mobility	-	
Temperature range	0-70°C (both ambient and process gas)	
Pressure range		
Media	Gas	
In-house/commercial	Commercial (Brooks Instrument)	

Overview		Fraunhofer Institut		
Name	Field omission Sconning	Chemische Technologie		
	Field-emission Scanning Electron Microscope			
Туре	Supra 55 VP			
Application	Characterisation of materials			
Technical details	6			
Description	Combining several ins the improved GEMINIC provides ultra high res range with the ability to specimens. It is also a probe current available technology for examin	Versatile High Performance VP SEM Combining several instruments in one, the SUPRA™ 55VP with the improved GEMINI® column is a true nanoscience FESEM. It provides ultra high resolution imaging over the complete voltage range with the ability to handle large awkwardly shaped specimens. It is also a fully analytical FESEM with up to 20nA probe current available and comprises variable pressure technology for examining non-conducting specimens without prior time consuming preparation.		
Instrumentation	- High efficiency In-Lei	Detector:		
		econdary Electron Detector		
	Analytic: EDX, EDAX Microanal	lysis System Type Genesis 4000		
Dimensions / we / mc	ight <i>Testing chamber: Øx</i> obility <i>no</i>	H = 330mm x 270mm		
Temperature rar	nge -30+50°C (peltier co	ntrolled)		
Pressure range	vacuum, 2133Pa			
Media	solids			
In-house/comme	ercial commercial, operated	with commercial ZEISS software		
References	-			
Schedule	12 hours for prepara	ation and study of one sample		

Fraunhofer Institut Chemische Technologie

Overview

Name Туре

X-Ray Diffractometer D8 series 2

Scale

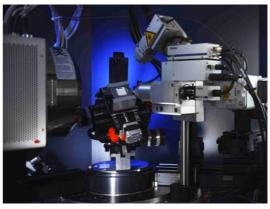
Experiments

phase/structure measurements

Technical details

Dimensions	<i>heating chamber for powder samples and plates with the dimension of 10x10x1mm</i>
Temperatures	heating chamber with a temperature range from -190°C to 1600°C
Pressure	ambient
Media	air, He, O2, N2, Ar
Special	area detector with eulerian cradle

Experiments - Equipment


Experiments	in-situ measurements at different temperatures and different gas conditions
	Structure and phase analysis
	Stress measurements
	Texture measurements

Level of detail e.g. ...

Instrumentation theta/theta-diffractometer

Instrumentation		
	HiSTAR area detector (Gadds)	
	Vantec (psd-detecor)	
	Szintillationcounter	
	Eulerian cradle	
	Different heating chambers	
Schedule	time needed for preparation: 1-2h	
	Isothermal measurements: typically 100h	
	Measurements at room temperature: few hours	
Tools	TOPAS-software for structure refinement	
	EVA-software for phase analysis	

Compilation of instrumentation 287/329 Fast Online Spectroscopy

NIR to UV-VIS spectrometers

and temperatures must be acquired

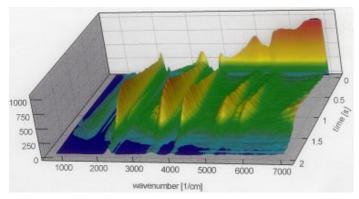
all kind of experiments where spectral radiation

Fraunhofer Institut Chemische Technologie

Technical details

Overview

Name


Туре

Application

Description	several types of spectrometers are available:
	Filter wheel spectrometer spectral range: 1.614µm resolution ~1% FS speed 50, max 100 spectra per sec.
	Lattice spectrometer (OMA) spectral range UV-VIS lattices 30/150/300nm speed up to 1000 spectra per second
	Lattice Spectrometer (Zeiss diode array) spectral range0.951,7µm resolution 18nm speed up to 100 spectra per second
	Fourier spectrometer spectral range2.516µm resolution 0.5cm ^{-1'} speed up to 1 spectrum per second
	AOTF spectrometer spectral range1.252.6µm without restrictions flexible selectable with 21000 points resolution <2.5nm speed 1500 spectra per second @ 128 points resolution
	2-colour sandwich pyrometer spectral range NIR speed 100000 temperature measurements per second
	Hot gas sensor spectral range NIR speed 500 measurements per second data emission temperature, water- and soot density
	Multi colour spectrometer spectral range visible light speed 200 spectra per second

Dimensions / weight / mobility	between handheld and PC case / < 30 kg yes
Temperature range	adaptable
Pressure range	adaptable
Media	adaptable
In-house/commercial	both

References

typical time resolved filterwheel spectra

Overview

Overview		
Name		h Speed Camera ynchronized Filterwheel
Туре	modifie	ed CEDIP Orion / Silver System
Application	solid a	esolved characterisation of and liquid burners, explosions, nition, burning and extinguishing iour
Technical details	5	
Description		IR High Speed Imaging system, based on CEDIP Silver Technology. Implemented in the housing of the Orion camera additional space allows to apply the ICT filter wheel module with fix interference filters. This modification provides full "Silver" camera functionality added by a fast filter wheel option.
Dimensions / wei / mo	ight bility	5 kg Yes
Temperature ran	ge	Filterwheel module with four interference filters (fix) to acquire four temperature ranges simultaneously with 110fps each
Speed		440 fps Fullframe with subwindow capabilities
Detector / Resolu	ution	InSb-Detector stirling cooled, 320 x 256 pixel
In-house/comme	ercial	In-house

References -

Name

High Speed Camera Systems

Type various models

Application time resolved characterisation of highly transient processes

Technical details

Vision Research

Vision Research

Kodak Motion Corder colour, 512 x 512px. @ 500fps, 8bit, subwindow capable

Weinberger SpeedCam Visario G3 colour, 1536 x 1024px. @ 1000fps, 8bit, subwindow capable

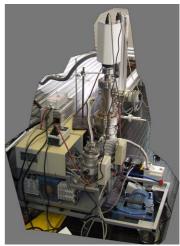
Vision Research Phantom V5.0 b/w, 1024 x 1024px. @ 1000fps, 8bit, subwindow capable (60.000fps max.)

b/w, 1600 x 1200px. @ 1000fps, 14bit, subwindow capable (144.000fps max.)

b/w, 1600 x 1200px. @ 1000fps, 14bit, subwindow capable (144.000fps max.)

Phantom V9.0

Phantom V9.1



Dimensions / weight 3...10 kg / mobility Yes

Overview

Name	Fast 8 kS/s mass spectrometer
Туре	Online Mass Spectrometer
Application	Monitoring hydrogen concentration in processes, studies on vented explosions, tank testing,

Description	This mass spectrometer is a very fast method for online monitoring of gases. Fastest possible time resolution is 0,125ms / mass at a response time of 100ms (recently realized 10ms/mass). Detectable hydrogen concentrations cover the range from low ppm to 100%.
Dimensions / weight / mobility	1 m³ / 55 kg yes
Temperature range	adaptable
Pressure range	adaptable
Media	any kind of gases e.g. hydrogen, air, nitrogen, steam,
In-house/commercial	In-house
References	confidential ICT reports, security research for automotive industry

OverviewNameHydrogen Measurement SystemTypefast 12-channel H2 concentration measurement
systemApplicationall kind of experiments where hydrogen
concentrations must be observed with high time
resolution

Description	continuous gas probe sampling system with 12 heat conducting sensors time resolution < 2s 0,1-0,5 l/min gas sampling flow 0-10 vol.% (+/-0.05 vol.%) hydrogen in air measurement range
Dimensions / weight / mobility	60 x 60 x 60 cm³ / 45 kg yes
Temperature range	ambient temperature range
Pressure range	0 - 1.5 bara
Media	hydrogen in air
In-house/commercial	in-house
References	confidential ICT reports, security research for automotive industry

Overview

Name	3-axis Positioning System
Туре	programmable positioning system
Application	all kind of experiments where position dependent data must be acquired

Technical details Description programmable 3-axis positioning system based on tooth strap stepping motor axes with control unit 5 kg moved mass (max.) 0.1 mm positioning precision remote control possible Dimensions / weight / mobility 2m x 2m x 2m working range ambient temperature range Temperature range Pressure range Media In-house/commercial commercial References confidential ICT reports, security research for automotive industry

Fraunhofer _{Institut} Chemische Technologie

Overview

Name	Gas Mixing Unit
Туре	remote controlled 4 component gas mixing unit
Application	all kind of experiments where gas supply with defined (hydrogen-) concentrations or mass flows are needed

Description	5 mass flow controllers 0.05 - 1250 In/min flow range 4 mixing stages remote controlled programmable: volume, mass, setpoints
Dimensions / weight / mobility	60 x 40 x 110 cm³ / 75 kg -
Temperature range	5 - 30°C ambient temperature
Pressure range	0 – 40 bar
Media	calibrated for H ₂ , N ₂ , O ₂ , Air other non-condensing gases / mixtures possible
In-house/commercial	in-house
References	confidential ICT reports, security research for automotive industry

Chemische Technologie

Name	6 MPa Autoclave	gas analyzer	pressure transducer
Туре	35I 6MPa autoclave with windows	ignition	
Application	dust / gas explosion experiments	controller sample input	NIR- spectrometer
Technical details	5		

Description A special autoclave with a Volume of 35 I equipped with pressure transducers, gas analyzer and windows of a wide spectral transmittance allowing spectra evaluation of hydrogen explosions. It withstands pressures at least up to 6 MPa and enables input of different additives shortly before, during and after ignition of the gas explosion.

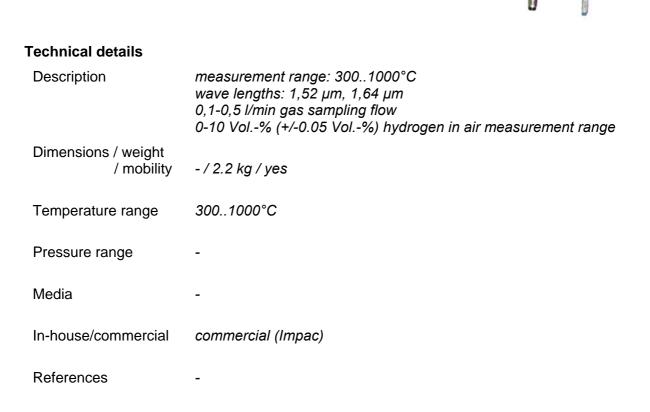
- Dimensions / weight 1 x 1 x 2 m³ / 300 kg / mobility no
- Temperature range adaptable

Overview

- Pressure range 0-60 bar
- Media gases / dust / ...
- In-house/commercial in-house
- References ICHS2005

Name	Hydrogen analyser
------	-------------------

TypeH2 concentration measurement
with heat conduction sensorApplicationhydrogen concentration
measurement with slow transients



Technical details	
Description	<i>heat conduction sensor response time 37 s 0,21,5 l/min gas sampling flow 0-100 Vol% hydrogen in air measurement range</i>
Dimensions / weight	
/ mobility	0.2 m x 0.5 m x 0.5 m / ~10 kg / limited
Temperature range	115 °C
Pressure range	atm. pressure
Media	hydrogen
In-house/commercial	commercial (Fisher-Rosemount)
References	-

Overview

Name	2 colour pyrometer	()
Туре	optical temperature measurement system	02922
Application	hot (catalyst) surface temperature measurement	

Name	Explosion effects measurement devices (expansive waves)
Туре	sensors, data logger
Application	Measurement and analysis of the propagation of expansive waves; pressure measures in different points.

Description	Several devices are included:
	<u>Sensors</u>
	Model IDA354-3,5C (NOBEL): pressure range 0-350 bar
	Model IDA354-1C (NOBEL): pressure range 0-100 bar
	Model PSE530-M5-L (SMC): pressure range 0-10 bar
	<u>Data logger</u>
	Data acquisition card
	Model DAQCard-6062E (National Instruments)
Dimensions / weight / mobility	-
Temperature range	-
Pressure range	-
Media	-
In-house/commercial	-
References	-

Name	Therr	mal conductivity analyser
Туре	TCD s	sensor
Application	Monite	oring hydrogen
Technical detail	S	
Dimensions / we / m	eight obility	-
Temperature ra	nge	System operating temperature: 32 to 122°F (0 to 50°C)
Pressure range		Pressure: 5-50psig
Media		Application: 0-100% H_2 in N_2
In-house/comm	ercial	Commercial. Teledyne TCD Sensor 2000 Series
Description		Thermal Conductivity Detector (TDC) based analyzer: Teledyne TCD Sensor 2000 Series
		By using field proven filament-based and semiconductor based TC detectors, this sensor is able to continuously monitor hydrogen in either binary of multi-component sample gas streams.
		Ranges: Three ranges plus a cal range, field selectable within limits and auto ranging
		Accuracy: ±1% of full scale most binary mixtures at constant temperature; ±5% of full scale over operating temperature range once temperature equilibrium has been reached
		Response time: 90% in less than 10 seconds with a flow rate of 100 sccm
		Sensor type: Standard TC cell (4-filament detector))
		Signal output: Two 0-1 VDC and two 4-20 mADC isolated
		Alarm: Two fully programmable concentration alarm set points and corresponding Form C, 3 amp contacts.
		Cell material: Nickel plated brass block with nickel alloy filaments and stainless steel piping and end plates
		O/P interface: Full duplex RS-232
		Max load impedance: 1000 ohms
References		-

INE-RIS

Overview

Name

- Type differential pressure measurement
- Application *measurement of turbulence in jet (gas, dust)*

turbulence probe

Technical details	
Description	Pitot principle device already depecited by Mc Caffrey associated to a high sensitivity pressure measuring cell
Dimensions / weight / mobility	1 cm for the probe, 10 cm for the box, easy to handle
Temperature range	ambient but resists to flames
Pressure range	0 to 150 Pa for this version (0 to \pm 10 m/s)
Media	gas, dust clouds, flames
In-house/commercial	in-house
References	

INERIS

Overview

Name	ionisation probe
Туре	multi point flame detector
Application	flame speed measurement

Technical details	
Description	a set of high voltage low capacity ion gages able to measure from very slow deflagration (including hydrogen) to overdriven detonations
Dimensions / weight / mobility	the probe is 50 cm long, the box 30 cm x 30 cm x 20 cm
Temperature range	ambient to 2500 K
Pressure range	ambient to 200 bar
Media	inconel
In-house/commercial	in-house
References	

INE-RIS

Overview

Name	fast optic pyrometer
Туре	solid temperature measurement
Application	fast temperature measurement of hot spots

Technical details classical but very fast (50 μ s) monochromatic pyrometer (1.7 μ m) Description to measure the temperatuer of a point of 0.5 mm Dimensions / weight / mobility 1 kg, 2 baxes Temperature range 200 to 1000°C Pressure range . . . Media . . . In-house/commercial commercial References . . .

INE-RIS

Overview

Name

Typepiezozelectric, piezoresistive,
capacitive pressure
measurementApplicationinflammation, explosion,
dispersion

pressure sensors

Technical details			
Description	various tehnologies but rather classical		
Dimensions / weight / mobility	portable		
Temperature range	-40 to 2000 °C		
Pressure range	from 0.1 Pa to 1000 bar		
Media			
In-house/commercial	commercial		
References	KISTLER, DRUCK,		

Name Gas Reaction Controller

Type Volumetric sorption measurement apparatus based on Sieverts' method

Application Assessment of hydrogen storage materials with respect to storage capacity, Pressure-Composition-Isotherms behaviour, kinetics rates, cyclic stability.

Description	The instrument consists basically in a reaction and in a hydrogen distribution system. Various pressure gauges for different pressure ranges from vacuum to high pressure. Equipment's operation is fully automatised.
Dimensions / weight/ m	obility Overall unit: 0.86 \times 0.76 \times 0.69 m, Reaction chamber: 2 cm ³ . Equipment cannot be moved
Temperature range	-60 to + 60°C (with a cryostat) and room temperature to 500 $^{\circ}\!$
Pressure range	10 ⁻¹ mbar to 200 bar
Media	Hydrogen, nitrogen and other inert gases
In-house/commercial	commercial (Advanced Material Corporation)
References	http://www.advanced-material.com/

NameGravimetric AnalyserTypeGravimetric sorption
measurement apparatusApplicationAssessment of hydrogen
storage materials with respect
to storage capacity, Pressure-
Composition-Isotherms
behaviour, spectrometry-
assisted gravimetric analysis
(TGA-MS), reaction
kinetics.

Technical details

Description	The equipment consists basically in a balance with a reference arm and a second arm with the material sample installed in a reaction chamber. The balance capacity is up to 5g. Additional features are a dynamic pressure control, multi-stream inlet for carrier and reactive mixtures, and an integrated dynamic sampling mass spectrometer for evolved gas analysis. Analyses are performed in automatic mode. The system is fitted with a unit to transfer sensitive samples directly from a glove box to the sample chamber.
Dimensions / weight / mobility	Overall unit: 1.8 \times 0.5 \times 1.8 m. Equipment cannot be moved.
Temperature range	-180°C to +500 <i>°</i> C (for SS reactor); -180°C to +1000°C (with quartz reactor)
Pressure	vacuum to 20 bar
Media	Hydrogen, nitrogen and other inert gases

In-house/commercial commercial, IGA (Hiden Isochema)

References <u>http://www.hidenisochema.com/</u>

Name Volumetric Sorption & Thermal **Desorption Analysers (two units)** Туре volumetric sorption measurement apparatus based on Sieverts' method Application Assessment of hydrogen storage materials with respect to storage capacity, Pressure-Composition-Isotherms behaviour, Thermal Desorption Spectroscopy (TDS),

Sorption/desorption rates, cyclic stability.

Description	The instrument consists basically in a reaction chamber whose temperature is controlled by a (cryo)-furnace and in a mass spectrometer for quantitative TDS. Various pressure gauges measures pressure range from vacuum to high pressure. The operation is fully automatised. The system is fitted with a unit to transfer sensitive samples directly from a glove box to the sample chamber.
Dimensions / weight / n	nobility Overall unit: $1.5 \times 0.7 \times 0.7$ m (Reaction chamber: 2 cm ³). Equipment cannot be moved
Temperature range	-180 to + 500°C
Pressure range	vacuum 10 ⁻⁸ mbar to 100 bar
Media	Hydrogen and auxiliary/calibration gases (He/H)
In-house/commercial	commercial, HTP (Hiden Isochema)
References	http://www.hidenisochema.com/

Name	Integral Pressure Transducer, Model D25	
Туре	tensometric pressure transducer	
Application	Continuous transformation of overpressures to the electric signal	- junit &

Technical details	
Description	This miniature dynamic pressure sensor is specifically designed for shock tube and blast wave measurements and for other applications requiring very high frequency, near non-resonant response
Dimensions / weight / mobility	d 20x35,5 mm / - / yes
Temperature range	from -50°C to +80°C
Pressure range	0-25 bar
Media	gas
In-house/commercial	commercial
References	http://www.valley.ru/~orlex/preob.htm

Name	Dynamic Pressure Sensor, Model	113A
Туре	Quartz pressure sensor	
Application	shock wave pressure measurements in shock/detonation tubes and other experimental facilities	

Description	This miniature dynamic pressure sensor is specifically designed for shock tube and blast wave measurements and for other applications requiring very high frequency, near non-resonant response
Dimensions / weight / mobility	d 6x38 mm / - / yes
Temperature range	from -40°C to +50°C
Pressure range	0-200 bar
Media	gas
In-house/commercial	commercial
References	http://www.pcb.com/products/

Name	Kistler Quartz High Pressure Sensor, Model 701A
Туре	Quarz pressure sensor
Application	Measurement of rapid pressure variations

Technical details	
Description	This miniature dynamic pressure sensor is specifically designed for shock tube and blast wave measurements and for other applications requiring very high frequency, near non-resonant response
Dimensions / weight / mobility	d 11x28 mm / 8.5 g / yes
Temperature range	from -40°C to +50°C
Pressure range	0-250 bar
Media	gas
In-house/commercial	commercial
References	http://www.kistler.com

Name	Heat Flux Transducer, Model TPI-2M
Туре	Integral heat flux sensor
Application	Measurement of integral heat flux

Technical details	
Description	The device converts a heat energy of any type of heat radiation source in an proportional electrical signal. Measurement range: the energy range from 1 to 1000 J, wavelength - from 0.5 to 10.6 microns
Dimensions / weight	
/ mobility	59x59 x100 mm / 200 g / yes
Temperature range	from -40°C to +50°C
remperature range	
Pressure range	normal (1 bar)
Media	gas
In-house/commercial	commercial
References	http://inergo.ru/

Name	Heat Flux Transducer, Model RRC KI LICHR
Туре	Integral heat flux sensor
Application	Measurement of heat flux

Technical details

Description	<i>Measurement range: MJ/m2 Conversion ratio: Uncertainty: Integral action time:</i>	1.5 MJ/m2/V 10 % 10 s:	0-20
Dimensions / weight / mobility	d 18x30 mm / 15 g / yes		
Temperature range	from -40°C to +50°C		
Pressure range	normal (1 bar)		
Media	gas		
In-house/commercial	in-house		

References

Name	Light Flux Transducer, Model FD-10GA
Туре	Photodiode
Application	Measurement of light flux

Technical details			
Description	Spectral range:		
	Sensitivity:	10 mA/Im	0.4-1.8 microns
Dimensions / weight / mobility	d 10x12 mm / - / yes		
Temperature range	from -40°C to +50°C		
Pressure range	normal (1 bar)		
Media	gas		
In-house/commercial	commercial		
References			

Compilation of instrumentation 313/329

Name	Schlieren System, Model IAB-451
Туре	Optical shadow device

Application High speed shadow photography

Technical details 230 mm Description Aperture: Dimensions / weight / mobility d 250x2500 mm / 200 kg / yes Temperature range from -40°C to +50°C Pressure range normal (1 bar) Media gas In-house/commercial commercial References ...

Name	Servomex Gas Analyzers
Туре	Series 1400 and 4000
Application	Measuring and monitoring Gas concentrations of Flammable gases (Hydro Carbons)

Technical details Description	IR gas analyzers
Dimensions / weight / mobility	Mobile, 3 channels for Ethylene,1 channel methane and Propane
Temperature range	0 – 40 °C
Ranges	Methane 0 -15 %, Ethylene 0 – 10 %and Propane 0 – 8 %
Media	Propane, Methane and Ethylene
In-house/commercial	Commercial
References	Servome, <u>http://www.servomex.com</u>

Name	Hydrogen Gas Analyzers
Туре	Series K1550
Application	Measuring and monitoring Gas concentrations of Hydrogen

Technical details	
Description	2 Gas analyzers
Dimensions / weight / mobility	mobile
Temperature range	0 – 40 °C
Ranges	Hydrogen 0 – 100 %
Media	Hydrogen
In-house/commercial	Commercial
References	Servome, <u>http://www.servomex.com</u>

Compilation of instrumentation 316/329

Name

Туре

Series 5000 and 570A

Oxygen Analyzers

Application Measuring and monitoring Oxygen concentrations

Technical details	Servortex o
Description	2 Oxygen analyzers
Dimensions / weight / mobility	mobile
Temperature range	0 – 40 °C
Ranges	(570A) 0-100% oxygen range accuracy \pm 0.1% 0 ₂ (5100IS) 0-100% oxygen range accuracy \pm 0.01% 0 ₂
Media	Oxygen
In-house/commercial	Commercial
References	Servomex, <u>http://www.servomex.com</u>

Name	Pressure Transducers	
Туре	Piezo-resistive pressure transducers	
Application	Measuring the face-on pressure or pressure in a explosion vessel.	

Technical details	
Description	Piezo-resistive transducers mostly manufactured by Endevco, but also Druck and Kulite
Dimensions / weight / mobility	mobile
Temperature range	-20 – 120 °C
Ranges	35 kPa – 20,000 kPa
Resonant frequency	150 – 600 kHz depending on range
In-house/commercial	Commercial

References http://www.endevco.com Endevco,

Name	Free Field Pressure Transducers
Туре	Free field pressure transducers on aerodynamic stands (Blast pencils)
Application	Measuring the free field (side-on) air blast propagation

Description	The blast-pencils consist of an aerodynamically shaped probe or Skimmer plate supplied with a flush mounted pressure sensor. The sensors are miniature piezo-resistive sensors (Kulite or Endevco).	
Dimensions / weight / mobility	mobile	
Temperature range	-20 – 120 °C	
Ranges	35 kPa,70 kPa, 140 kPa, 350 kPa untill 3,500 kPa for the Skimmer plates	
Resonant frequency	150 – 400 kHz depending on range	
In-house	The pencils and the Skimmer plates are manufactured in house	

Name

Displacement transducers

- Type Micro epsilon (Laser Displacement systems) and AE (Cable actuated displacement)
- Application To measure response of constructions during an explosion load.

Technical details

Description	Laser and Cable actuated displacement measurement systems
Dimensions / weight	

Dimensions / weight / mobility	mobile
Temperature range	-20 – 40 °C
Ranges	0 – 1,000 mm
Media	-
In-house/commercial	Commercial

References

Micro Epsilon and AE.

Name

Accelerometers

Type Serie 2270A and 2262A from Endevco; series EGE 73BQ and EGAS FS 25 from Entran; from PCB the series 350B and the M352A.

Application To measure acceleration during an explosion load.

Technical details

Description	45 transducers, ICP and Piezo- resistive.
Dimensions / weight / mobility	mobile
Temperature range	-20 – 80 °C
Ranges	5,000 – 20,000 m/s ²
Media	-
In-house/commercial	Commercial

References

Endevco, Entran and PCB

Name	Two systems, SCADAS III and Pacific
Туре	LMS SCADAS III and Pacific 5800.

Application Signal Conditioning and Acquisition of signals of measurements.

Technical details

Description	68 channels of SCADAS III and 50 channels Pacific
Dimensions / weight / mobility	mobile
Bandwith Amplifiers	Pacific 400 kHz SCADAS 100 kHz
Max. Sample rate	Pacific 2 MHz SCADAS 202 kHz
Resolution	Pacific 12 bit SCADAS 24 bit
Memory Capacity	Pacific 2048 k-words SCADAS (limit of HD)
In-house/commercial	Commercial

References

LMS and Pacific

Name Smart 3

Туре

Application continuous monitoring of hydrogen concentration

H2 sensor

Description	_
Decemption	
Dimensions / weight / mobility	106x160x80 mm / 0.9 kg / yes
Temperature range	-10 / +60 °C
Pressure range	80-110 kPa
Media	gas
In-house/commercial	commercial
References	SENSITRON S.r.I. – Cornaredo (MI) ITALY – Viale della Repubblica, 48 – www.sensitron.it

Name

Microwave Radar

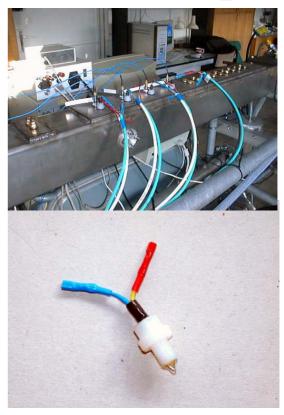
Type X-band radar Doppler unit

Application continuous monitoring of the fast deflagration and detonation velocity along the tube

Description	-
Dimensions / weight / mobility	10x5x3 cm / 0.2 kg / yes
Temperature range	no limit
Pressure range	no limit
Media	gas
In-house/commercial	in-house
References	DABKOWSKI A., KOZAK A., TEODORCZYK A.: The Initiation of Gaseous Detonations in H_2 -O ₂ Mixtures by Incident Shock Wave, Proceedings of the VI Seminar "New Trends in Research of Energetic Materials", Pardubice 2003, pp.89-99

NamePCB pressure transducersTypeset of PCB pressure transducers with
8 channel 10 MHz data acquisition
systemApplicationmonitoring detonation

Description	-
Dimensions / weight / mobility	30x5x5 mm / 0.05 kg / yes
Temperature range	250-500 K
Pressure range	0-10 MPa
Media	gas
In-house/commercial	commercial
References	www.pcb.com



Name	Photodiodes
Туре	set of photodiodes with 8 channel 10 MHz data acquisition system
Application	monitoring deflagration and detonation waves

Description	-
Dimensions / weight / mobility	10x5x5 mm / 0.01 kg / yes
Temperature range	no limit
Pressure range	no limit
Media	gas
In-house/commercial	in-house
References	-

Name	Ion Probe
Туре	set of ionization probes with 8 channel 10 MHz acquisition system
Application	monitoring deflagration and detonation waves

Description	-
Dimensions / weight / mobility	30x5x5 mm / 0.005 kg / yes
Temperature range	250-1000 K
Pressure range	no limit
Media	gas
In-house/commercial	in-house
References	-

Name	Schlieren optical system
Туре	schlieren optical system combined with recording camera
Application	photographic registration of deflagration and detonation waves

Description	-
Dimensions / weight / mobility	3x3x2 m / 200 kg / no
Temperature range	-
Pressure range	-
Media	gas
In-house/commercial	in-house
References	-

Name

Rapid Compression Machine (RCM)

Typecombustion driven Rapid Compression
Machine (RCM)Applicationstudies of autoignition of gaseous
mixtures

Technical details

Description	
Dimensions / weight / mobility	100x50x40 cm / 50 kg / yes
Temperature range	250-500 K
Pressure range	0.1-10 MPa
Media	gas
In-house/commercial	in-house
References	A.DABKOWSKI*, T.KAWAKAMI** and A. TEODORCZYK: Preliminary Experimental Study of Autoignition of Hydrogen-Oxygen Mixture by Using Combustion Driven Rapid Compression Machine, Journal of KONES

Internal Combustion Engines, Vol.8, No. 1-2, 2001, pp.45-51

Descriptions of experimental facilities 329/329