HySafe The European Network of Excellence for Hydrogen Safety

Guidance for using hydrogen in confined spaces Results from InsHyde

A.G. Venetsanos, NCSR Demokritos, Greece, InsHyde coordination venets@ipta.demokritos.gr

Use of hydrogen in confined spaces

Spaces containing parts where hydrogen can accumulate

garage

Electrolyser

Refuelling station

Underground storage

InsHyde IP

Internal project within HYSAFE NoE

- <u>http://www.hysafe.net/InsHyde</u>
- Scope
 - To investigate realistic small-medium indoor leaks and provide recommendations for the safe use/storage of indoor hydrogen systems

Participation/Duration

- Nearly all HYSAFE participants
- 3 years

InsHyde structure

Work packages:

- 1. Review
- 2. Gas Detection experiments (public D54, see website)
- 3. Theoretical study of permeation
- 4. Dispersion experiments (see refs 1-3, ICHS-2)
- 5. Explosion experiments (see refs 4-5, ICHS-2)
- 6. Ignition
- 7. CFD modelling (see refs 2,6, ICHS-2)
- 8. Scaling methodology
- 9. Recommendations (D113 public by Dec 2008)
- 10. Dissemination (ICHS-2, <u>ICHS-3</u>, ...)

H2 dispersion test INERIS-6C (ref 1)

Blind CFD modelling of INERIS-6C (ref 2)

Post CFD modelling of INERIS-6C (ref 2)

He dispersion tests by CEA (ref 3) Garage facility at CEA

 ✓ Stainless steel skeleton

✓ Replaceable wall modules

 ✓ Commercial tilting door in the front side (not completely sealed)

 ✓ Technical access door in the back (sealed)

 ✓ Laser based measurements possible

He dispersion tests by CEA (ref 3)

Test matrix (free volume - no ventilation)

	GAR_FV_nV-TEST1	GAR_FV_nV-TEST2	GAR_FV_nV-TEST3	GAR_FV_nV_TEST4	GAR_FV_nV-TEST5
/olumetric flow rate – STP (NL.min ⁻¹)	668	66.8	668	18	18
Helium mass flow rate (g.s ⁻¹)	1.99	0.2	1.99	0.05	0.05
Release diameter (mm)	20.7	20.7	20.7	5	30
Release duration (s)	121	300	500	3740	3740
Release Direction	Upward	Upward	Upward	Upward	Upward
Release Type	Continue	Continue	Continue	Continue	Continue
Release period – if pulsed	-	-	-	-	-
x release (m)	2.88	2.88	2.88	2.88	2.88
y release (m)	1.48	1.48	1.48	1.48	1.48
z release (m)	0.22	0.22	0.22	0.22	0.22
Garage temperature T _{moy} (°C)	20	20	20	20	20
Released volume – STP (Nm ³)	1.35	0.33	5.57	1.12	1.12
Released volume - T _{moy} (m ³)	1.45	0.36	5.97	1.2	1.2
Released mass (g)	240	60	994	200	200
Concentration T _{moy} (%)	3.5	0.9	14.5	2.9	2.9
Exit velocity - 20°C (m.s ⁻¹)	35.50	3.55	35.50	16.40	0.46
Re₀ - 20°C	6150	615	6150	<mark>686</mark>	114
Ri₀ - 20°C	9.9E-04	9.9E-02	9.9E-04	1.1E-03	8.7E+00
	turbulent jet	laminar jet-plume transition	turbulent jet	laminar jet	Laminar plume

H2 explosion tests by FZK (refs 4,5) Explosion tests facility at FZK

H2 explosion tests by FZK (refs 4,5)

Release duration (s) for						
H, Inventory: 1g						
Exit velocity;	Nozzle	Nozzle	Nozzle			
m/s	d= 100mm	d= 21mm	d=4mm			
0,2	7,13 s					
1	1,43 s					
5	0,29 s	6,47 s				
100		0,32 s	7,00 s			
200		0,16 s	3,50 s			
400			1,75 s			

Release duration (s) for						
H, Inventory: 3g						
Exit velocity;	Nozzle	Nozzle	Nozzle			
m/s	d= 100mm	d= 21mm	d = 4mm			
0,2	21,39 s					
1	4,28 s					
5	0,86 s	19,40 s				
100		0,97 s	21,00 s			
200		0,49 s	10,50 s			
400	21 -		5,25 s			

Explosion tests matrix

Release duration (s) for H ₂ Inventory: 10g					
Exit velocity; m/s	Nozzle d= 100mm	Nozzle d= 21mm	Nozzle d= 4mm		
0,2	71,30 s				
1	14,26 s				
5	2,85 s	64,67 s			
100		3,23 s	70,00 s		
200		1,62 s	35,00 s		
400			17,50 s		

H2 explosion tests by FZK (refs 4,5)

Some results:

- Undisturbed free jet
 - a maximum overpressure of 11.1 mbar at distance 0.403 m from the ignition source
- Hydrogen accumulation in a hood
 - a maximum overpressure of 53.2 mbar at the highest position inside the hood at a distance of 0.78 m from the ignition
- Grid net layer structures for flame acceleration
 - a maximum overpressure of 9176 mbar at distance 0.345 m from the ignition
 - a maximum overpressure of 410 mbar at distance 1.945 m from the ignition

InsHyde/ Document D113

Title:

 Guidance for using hydrogen in confined spaces - Results from InsHyde (90 pp.)

Scope

- To provide general guidance on the use of h2 in confined spaces
- To summarize results obtained during InsHyde
- **Concerned** public
 - Research, industry and general public

Contributions

- Coordination: NCSRD and INERIS
- Authors (alphabetically): BMW, BRE, FH-ICT, FZJ, FZK, GEXCON, HSL, INASMET, INERIS JRC, KI, NCSRD, STATOIL/HYDRO, UNIPI, UU

Reviewers: VOLVO, AVT

InsHyde/ Document D113

Document structure

- 1. Introduction
- 2. Risk control measures when using hydrogen indoors
- 3. Hydrogen behaviour in accidental situations
- 4. Risk assessment recommendations
- 5. Experiences from HYSAFE members

InsHyde/ D113 structure

- 1. Introduction
 - Scope
 - Hydrogen basic properties
 - Confined spaces and hydrogen systems
 - Reference documentation
- 2. Risk control measures when using hydrogen indoors
 - Fuel supply and storage arrangement
 - Detection
 - Ventilation and exhaust
 - Fire and explosion safety
 - Commissioning, inspections, training and worker protection
 - Reference documentation

InsHyde/ D113

- **HySafe**
- 3. Hydrogen behaviour in accidental situations
 - Hydrogen release and dispersion
 - Hydrogen ignition
 - Hydrogen explosion
 - Hydrogen fire
 - Reference documentation
- 4. Risk assessment recommendations
 - Risk assessment methodology
 - Consequence assessment
 - Reference documentation

InsHyde/ D113

5. Experiences from HYSAFE members

- Schematic for the assessment and prevention of explosive risks
- Safety assessment for hydrogen laboratory at Forschungszentrum Juelich, Germany
- Safety assessment for Statoil/Hydro 15 bar electrolyser
- BMW (H2 research centre 250 bar CGH2 and LH2)
- Safety assessment of the PEMFC test laboratory at INASMET-Tecnalia, Spain
- Safety assessment for explosion risks at Fraunhofer Solid Oxide Fuel Cell Laboratory
- Safety assessment for hydrogen facilities at University of Pisa, Italy
- Safety assessment for the Safety Vessel A1 on the hydrogen test site HYKA at Forschungszentrum Karlsruhe, Germany
- Safety assessment for dispersion and explosion testing at INERIS, France
- Safety assessment for the "Globus" facility at Russian Research Center Kurchatov Institute Moscow, Russia
 - HSL Risk assessment

Future work

Further pre-normative work is needed:

- To be funded by JTI +...
- To be jointly undertaken by research + industry + regulatory bodies
- To increase our understanding on hydrogen behaviour in confined spaces

Thank you!

 In order to formulate the requirements (at EC and global level) for permitting the use of hydrogen vehicles (cars and commercial vehicles) in confined spaces

References

- 1. J.M. Lacome, Y. Dagba, L. Perrette, D. Jamois, Ch. Proust, Large scale hydrogen release, in an isothermal confined area, ICHS-2, 2007
- A.G. Venetsanos, E. Papanikolaou, M. Delichatsios, J. Garcia, O.R. Hansen, M. Heitsch, A. Huser, W. Jahn, T. Jordan, J-M. Lacome, H.S. Ledin, D. Makarov, P. Middha, E. Studer, A.V. Tchouvelev, A. Teodorczyk, F. Verbecke, M.M. van der Voort, An Inter-Comparison Exercise On the Capabilities of CFD Models to Predict the Short and Long Term Distribution and Mixing of Hydrogen in a Garage, ICHS-2, 2007
- S. Gupta, J. Brinster, E. Studer, I. Tkatschenko, Hydrogen related risks within a private garage: Concentration measurements in a realistic full scale experimental facility, ICHS-2, 2007
- 4. A. Friedrich, J. Grune, N. Kotchourko, A. Kotchourko, K. Sempert, G. Stern, M. Kuznetsov, Experimental study of jet-formed hydrogen-air mixtures and pressure loads from their deflagrations in low confined surroundings, ICHS-2, 2007
- 5. P. Middha, O.R. Hansen, J. Grune, A. Kotchourko, Validation of CFD calculations against ignited impinging jet experiments, ICHS-2, 2007
- 6. Papanikolaou E.A. and Venetsanos A.G., CFD simulations of hydrogen release and dispersion inside the storage room of a hydrogen refuelling station using the ADREA-HF code, ICHS-2, 2007