HYDROGEN THERMOCHEMISTRY Module Fundamentals of Hydrogen Safety Lecture 3

COMBUSTION REACTION OF HYDROGEN IN AIR STOICHIOMETRIC EQUATION

Stoichiometric equation of the hydrogen-oxygen reaction:

$$\nu_{H_2}^{,} H_2 + \nu_{O_2}^{,} O_2 + \nu_{H_2O}^{,} H_2O \xrightarrow{k} \nu_{H_2}^{,,} H_2 + \nu_{O_2}^{,,} O_2 + \nu_{H_2O}^{,,} H_2O$$
(1)

where ν_i and ν_i respectively denote the stoichiometric coefficients before and after the reaction.

$$\nu_{H_{2}}^{i} = 2, \ \nu_{O_{2}}^{i} = 1, \ \nu_{H_{2}O}^{i} = 0$$

$$\nu_{H_{2}}^{ii} = 0, \ \nu_{O_{2}}^{ii} = 0, \ \nu_{H_{2}O}^{ii} = 2$$

$$\implies 2 H_{2} + O_{2} \xrightarrow{k} 2 H_{2}O \qquad (2)$$

Stoichiometric equation of the hydrogen-air reaction:

COMBUSTION REACTION OF HYDROGEN IN AIR STOICHIOMETRIC AIR-FUEL RATIO AND EQUIVALENCE RATIO

The stoichiometric equation of the hydrogen-air reaction (3) may be written as:

$$\nu_{\rm H_2}^{'} \,{\rm H_2} + \nu_{\rm Air}^{'} \left[{\rm O}_2 + \left(\nu_{\rm N_2}^{'}/\nu_{\rm O_2}^{'}\right) \,{\rm N_2} \right] \nu_{\rm H_2O}^{'} \,{\rm H_2O} \xrightarrow{k} \nu_{\rm H_2}^{"} \,{\rm H_2} + \nu_{\rm O_2}^{"} \,{\rm O}_2 + \nu_{\rm N_2}^{"} \,{\rm N_2} + \nu_{\rm H_2O}^{"} \,{\rm H_2O} \right]$$
(5)
$$\nu_{\rm H_2}^{'} = 2, \ \nu_{\rm Air}^{'} = 1.0, \ \nu_{\rm N_2}^{'}/\nu_{\rm O_2}^{'} = 3.762, \ \nu_{\rm H_2O}^{'} = 0, \ \nu_{\rm H_2}^{"} = 0, \ \nu_{\rm O_2}^{"} = 0, \ \nu_{\rm N_2}^{"} = 0, \ \nu_{\rm H_2O}^{"} = 0, \ \nu_{\rm H_2O}^{"$$

The stoichiometric air-fuel ratio is defined as:

$$\lambda_{\rm AF} \equiv \left[\frac{M_{\rm Air}}{M_{\rm Fuel}}\right]_{\rm St} = \left[\frac{M_{\rm Air}}{M_{\rm H_2}}\right]_{\rm St} = \left[1 + \frac{\nu'_{\rm N_2}}{\nu'_{\rm O_2}}\right] \left[\frac{\nu'_{\rm Air}}{\nu'_{\rm H_2}}\right]_{\rm St} \frac{\mathcal{M}_{\rm Air}}{\mathcal{M}_{\rm H_2}} = 4.762 \left[\frac{\nu'_{\rm Air}}{\nu'_{\rm H_2}}\right]_{\rm St} \frac{\mathcal{M}_{\rm Air}}{\mathcal{M}_{\rm H_2}}$$
(7)

where M_i denotes the total mass of the *i*-th species, and \mathcal{M}_i its molecular mass. The **equivalence ratio of the fuel-air system**, $0 \leq \phi < \infty$, is defined as

$$\phi \equiv \frac{[M_{\rm Fuel}/M_{\rm Air}]}{[M_{\rm Fuel}/M_{\rm Air}]_{\rm St}} = \frac{\left[\nu_{\rm H_2}^{\prime}/\nu_{\rm Air}^{\prime}\right]}{\left[\nu_{\rm H_2}^{\prime}/\nu_{\rm Air}^{\prime}\right]_{\rm St}} = \frac{[\rm vol.\%\,H_2/(100 - \rm vol.\%\,H_2)]}{[\rm vol.\%\,H_2/(100 - \rm vol.\%\,H_2)]_{\rm St}}$$
(8)

where $\phi < 1$ denotes fuel-lean, $\phi = 1$ stoichiometric, and $\phi > 1$ fuel-rich mixtures.

The equivalence ratio of a fuel-oxidiser system is independent of the amount of inert species!

COMBUSTION REACTION OF HYDROGEN IN AIR OVERALL REACTION RATE EXPRESSION

• For a chemical reaction,

$$\sum_{i=1}^{i=N} \nu_{\mathbf{M}_i} \, \mathbf{M}_i \xrightarrow{k} \sum_{i=1}^{i=N} \nu_{\mathbf{M}_i}^{,,} \, \mathbf{M}_i, \tag{9}$$

the **law of mass action** states that the **overall rate of reaction**, RR, is proportional to the product of the reactant concentrations.

$$RR = k \prod_{i=1}^{i=n} [M_i]^{\nu'_{M_i}}.$$
 (10)

• The net production rate of each species is

$$\frac{d\left[\mathbf{M}_{i}\right]}{dt} = \left(\nu_{\mathbf{M}_{i}}^{"} - \nu_{\mathbf{M}_{i}}^{"}\right) \, \mathbf{R}\mathbf{R} = \left(\nu_{\mathbf{M}_{i}}^{"} - \nu_{\mathbf{M}_{i}}^{"}\right) \, k \, \prod_{i=1}^{i=n} \left[\mathbf{M}_{i}\right]^{\nu_{\mathbf{M}_{i}}^{"}}.$$
(11)

• The specific reaction rate constant, k, is independent of the concentrations $[M_i]$, and depends only on the temperature (equation of Arrhenius)

$$k = A T^{b} \exp\left(-\mathbf{E}_{a}/RT\right), \qquad (12)$$

where AT^b represents the collision frequency, and the exponential term is called the Boltzmann factor. The values of A, b and E_a are characteristic to the nature of the reaction, and, independent of pressure, temperature and concentration in case of an elementary reaction.

COMBUSTION REACTION OF HYDROGEN IN AIR OVERALL REACTION RATE EXPRESSION

• For the overall hydrogen-air reaction (3), the law of mass action (10) becomes:

$$RR = k \left[H_2 \right]^{\nu_{H_2}} \left[O_2 \right]^{\nu_{O_2}}, \qquad (13)$$

and the net production rate of species (11) becomes

$$-\frac{1}{2}\frac{d\,[\mathrm{H}_2]}{dt} = -\frac{d\,[\mathrm{O}_2]}{dt} = \frac{1}{2}\frac{d\,[\mathrm{H}_2\mathrm{O}]}{dt} = k\,[\mathrm{H}_2]^{\nu_{\mathrm{H}_2}}\,[\mathrm{O}_2]^{\nu_{\mathrm{O}_2}}; \quad \frac{d\,[\mathrm{N}_2]}{dt} = 0 \tag{14}$$

• For the overall hydrogen-air reaction (5), the law of mass action (10) becomes:

$$RR = k [H_2]^{\nu'_{H_2}} [Air]^{\nu'_{Air}}, \qquad (15)$$

and the net production rate of species (11) becomes

$$-\frac{1}{2}\frac{d\,[\mathrm{H}_2]}{dt} = -\frac{d\,[\mathrm{O}_2]}{dt} = \frac{1}{2}\frac{d\,[\mathrm{H}_2\mathrm{O}]}{dt} = k\,[\mathrm{H}_2]^{\nu_{\mathrm{H}_2}}\,[\mathrm{O}_2]^{\nu_{\mathrm{Air}}}; \quad \frac{d\,[\mathrm{N}_2]}{dt} = 0 \tag{16}$$

• The overall hydrogen-air reaction (cf. equations (3) and (11)) is the sum of a large number of elementary reactions. Unlike with elementary reactions, the values of A, b and E_a in the expression for the specific rate constant (12) do depend on pressure and concentration.

COMBUSTION REACTION OF HYDROGEN IN AIR OVERALL REACTION ORDER

The overall reaction order of a chemical system of arbitrary complexity follows from its representation as a one-step overall reaction

$$\sum_{i=1}^{i=N} \nu_{\mathcal{M}_i} \,\mathcal{M}_i \xrightarrow{k} \sum_{i=1}^{i=N} \nu_{\mathcal{M}_i}^{,,} \,\mathcal{M}_i, \qquad (17)$$

where ν_{M_i} are the stoichiometric coefficients of the reactants, ν_{M_i} are the stoichiometric coefficients of the products, M_i the specification of the *i*-th species, and N the total number of compounds involved.

- The overall process represented by equation (17) is said to be of order ν'_{M_i} with respect to M_i .
- The overall reaction order of the process represented by equation (17) is equal to the sum of ν'_{M_i} , $\sum_{i=N}^{i=N} \sum_{i=N}^{i=N} \sum_{$

$$n = \sum_{i=1}^{n} \nu_{\mathcal{M}_i}^{,},\tag{18}$$

i.e. the sum of the exponents in the reactant concentration term.

• With hydrogen-air mixtures in the equivalence ratio range $0.6 < \phi < 1.1$ at 1 atm, Marinov, Wetbrook & Pitz (1996) [1] observed that the constants in the overall reaction rate

$$RR_{ov} = k [H_2]^{\nu'_{H_2}} [O_2]^{\nu'_{O_2}} = A T^b \exp(-E_a/RT) [H_2]^{\nu'_{H_2}} [O_2]^{\nu'_{O_2}}, \qquad (19)$$

assume values of

$$A = 1.8 * 10^{13} \,\mathrm{mol} \,\mathrm{cm}^{-3} \,\mathrm{s}^{-1}, \ b = 0, \ \mathrm{E_a} = 73745 \,\mathrm{cal} \,\mathrm{mol}^{-1}, \ \nu_{\mathrm{H_2}}^{,} = 1.0, \ \mathrm{and} \ \nu_{\mathrm{O_2}}^{,} = 0.5.$$

COMBUSTION REACTION OF HYDROGEN IN AIR EFFECT OF EQUIVALENCE RATIO AND PRESSURE ON OVERALL REACTION ORDER

Figure 1. Overall reaction order for lean, stoichiometric and rich hydrogen-air mixtures, showing a decreasing, and then an increasing trend with increasing pressure. After Law (2006) [2].

COMBUSTION REACTION OF HYDROGEN IN AIR EFFECT OF EQUIVALENCE RATIO AND PRESSURE ON OVERALL ACTIVATION ENERGY

Figure 2. Overall activation energy for hydrogen-air mixtures, showing its strong variation with pressure. After Law (2006) [2].

COMBUSTION REACTION OF HYDROGEN IN AIR EFFECT OF EQUIVALENCE RATIO AND PRESSURE ON OVERALL ACTIVATION ENERGY

Figure 3. Overall activation energy for rich hydrogen=air mixtures as a function of pressure, for various equivalence ratios. After Christiansen, Law & Sung (2000) [3] and Law (2006) [2].

COMBUSTION REACTION OF HYDROGEN IN AIR REACTION MECHANISMS: THE MILLER MECHANISM

Table 1. Elementary reactions and forward rate constants of the mechanism by Miller, Mitchell, Smooke & Kee (1982) [4] with 23 reactions and 9 species. Units are: A: $[mol^{1-n} cm^{3n-3} s^{-1} K^{-b}]$; b: [-]; E_a: $[cal mol^{-1}]$.

Reaction	A	b	Ea
$H_2 + OH \rightleftharpoons H_2O + H$	$2.16^{*}10^{18}$	1.51	3430
$H + O_2 \rightleftharpoons OH + O$	$2.65 \cdot 10^{16}$	-0.6707	17041
$O + H_2 \rightleftharpoons OH + H$	$3.87 \cdot 10^4$	2.7	6260
$H + 2O_2 \rightleftharpoons HO_2 + O_2$	$2.08 \cdot 10^{19}$	-1.24	0
$OH + 2O_2 \Longrightarrow HO_2 + O_2$	$1.45 \cdot 10^{13}$	0	-500
	$5 \cdot 10^{15}$	0	17330
$H + 2 HO_2 \rightleftharpoons OH + OH$	$8.4 \cdot 10^{13}$	0	635
$O + 2 HO_2 \rightleftharpoons O_2 + OH$	$2 \cdot 10^{13}$	0	0
$H_2 + M \rightleftharpoons H + H + M$	$2.2 \cdot 10^{22}$	-2	0
$H + OH + M \rightleftharpoons H_2O + M$	$4.48 \cdot 10^{13}$	0	1068
$H_2O_2 + M \rightleftharpoons OH + OH + M$	$1.21 \cdot 10^{7}$	2	5200
$H_2O_2 + OH \Longrightarrow H_2O + HO_2$	$2 \cdot 10^{12}$	0	427
	$1.7 \cdot 10^{18}$	0	29410
$O + H + M \rightleftharpoons OH + M$	$5 \cdot 10^{17}$	-1	0
$O + H_2O_2 + M \rightleftharpoons OH + HO_2$	$9.63 \cdot 10^{6}$	2	4000

Continued on the next page

COMBUSTION REACTION OF HYDROGEN IN AIR REACTION MECHANISMS: THE MILLER MECHANISM

Table 1. Elementary reactions and forward rate constants of the mechanism by Miller, Mitchell, Smooke & Kee (1982) [4] with 23 reactions and 9 species. Units are: A: $[mol^{1-n} cm^{3n-3} s^{-1} K^{-b}]; b: [-]; E_a: [cal mol^{-1}].$

Reaction	A	b	E_{a}
$H + HO_2 \rightleftharpoons O + H_2O$	$3.97 \cdot 10^{12}$	0	671
$H + H_2O_2 \rightleftharpoons OH + H_2O$	$1 \cdot 10^{13}$	0	3600
$2 \mathrm{OH} + \mathrm{M} \rightleftharpoons \mathrm{H}_2\mathrm{O}_2 + \mathrm{M}$	$2.3 \cdot 10^{18}$	-0.9	-1700
$H + O_2 + H_2O \Longrightarrow HO_2 + H_2O$	$1.126 \cdot 10^{19}$	-0.76	0
$H + O_2 + Ar \rightleftharpoons HO_2 + Ar$	$7 \cdot 10^{17}$	-0.8	0
$2 \text{ OH} \rightleftharpoons \text{O} + \text{H}_2\text{O}$	$3.57 \cdot 10^4$	2.4	-2110
$O_2 + M \rightleftharpoons 2O + M$	$1.2 \cdot 10^{17}$	-1	0
$2 \operatorname{HO}_2 \rightleftharpoons \operatorname{H}_2 \operatorname{O}_2 + \operatorname{O}_2$	$1.3 \cdot 10^{11}$	0	-1630
	$4.2 \cdot 10^{14}$	0	12000
$2 \mathrm{H} + \mathrm{H}_2\mathrm{O} \Longrightarrow \mathrm{H}_2 + \mathrm{H}_2\mathrm{O}$	$6 \cdot 10^{19}$	-1.25	0
$2 H + H_2 \rightleftharpoons 2 H_2$	9.10^{16}	-0.6	0

Continued from previous page

COMBUSTION REACTION OF HYDROGEN IN AIR **REACTION MECHANISMS: THE MARINOV MECHANISM**

Table 2. Elementary reactions and forward rate constants of the mechanism by Marinov, Westbrook & Pitz (1996) [1] with 24 reactions and 9 species. Units are: A: $[mol^{1-n} cm^{3n-3} s^{-1} K^{-b}]; b: [-]; E_a:$ $[\operatorname{cal} \operatorname{mol}^{-1}].$

Reaction	A	b	Ea
$H_2 + OH \rightleftharpoons H_2O + H$	$2.14^{*}10^{8}$	1.52	3449
$H + O_2 \rightleftharpoons OH + O$	$2.02 \cdot 10^{14}$	-0.4	0
$O + H_2 \rightleftharpoons OH + H$	$5.06 \cdot 10^4$	2.67	6290
$H + O_2 + M \rightleftharpoons HO_2 + M$	$1.05 \cdot 10^{19}$	-1.257	0
$OH + 2O_2 \Longrightarrow HO_2 + O_2$	$2.89 \cdot 10^{13}$	0	-497
$H + 2 HO_2 \rightleftharpoons OH + OH$	$1.5 \cdot 10^{14}$	0	1000
$O + 2 HO_2 \rightleftharpoons O_2 + OH$	$3.25 \cdot 10^{13}$	0	0
$H_2 + M \rightleftharpoons H + H + M$	$2.21 \cdot 10^{22}$	-2	0
$H + OH + M \Longrightarrow H_2O + M$	$8.45 \cdot 10^{11}$	0.65	1241
$H_2O_2 + M \rightleftharpoons OH + OH + M$	$1.98 \cdot 10^{6}$	2	2435
$H_2O_2 + OH \rightleftharpoons H_2O + HO_2$	2.4	4.042	-2162
$O + H + M \rightleftharpoons OH + M$	$4.71 \cdot 10^{18}$	-1	0
$O + H_2O_2 + M \rightleftharpoons OH + HO_2$	$9.55 \cdot 10^{6}$	2	3970
Continued on the	novt naro		

Commuted on the next page

COMBUSTION REACTION OF HYDROGEN IN AIR REACTION MECHANISMS: THE MARINOV MECHANISM

Table 2. Elementary reactions and forward rate constants of the mechanism by Marinov, Westbrook & Pitz (1996) [1] with 24 reactions and 9 species. Units are: A: $[mol^{1-n} cm^{3n-3} s^{-1} K^{-b}]; b: [-]; E_a: [cal mol^{-1}].$

Reaction	A	b	Ea
$H + HO_2 \rightleftharpoons O + H_2O$	$3.01 \cdot 10^{13}$	0	1721
$H + H_2O_2 \rightleftharpoons OH + H_2O$	$3.07 \cdot 10^{13}$	0	4217
$2 \mathrm{OH} + \mathrm{M} \rightleftharpoons \mathrm{H}_2\mathrm{O}_2 + \mathrm{M}$	$3.041 \cdot 10^{30}$	-4.63	2049
$H + O_2 + H_2 \rightleftharpoons HO_2 + H_2$	$1.52 \cdot 10^{19}$	-1.133	0
$H + O_2 + N_2 \rightleftharpoons HO_2 + N_2$	$2.031 \cdot 10^{20}$	-1.590	0
$H + O_2 + H_2O \Longrightarrow HO_2 + H_2O$	$2.1 \cdot 10^{23}$	-2.437	0
$2 \text{ OH} \rightleftharpoons \text{O} + \text{H}_2\text{O}$	$3.57 \cdot 10^4$	2.4	-2112
$O_2 + M \rightleftharpoons 2O + M$	$1.89 \cdot 10^{13}$	0	-1788
$2 \operatorname{HO}_2 \rightleftharpoons \operatorname{H}_2 \operatorname{O}_2 + \operatorname{O}_2$	$4.2 \cdot 10^{14}$	0	-11980
	$1.3 \cdot 10^{11}$	0	-1629
$2 H + H_2 O \rightleftharpoons H_2 + H_2 O$	$6 \cdot 10^{19}$	-1.25	0
$2 H + H_2 \rightleftharpoons 2 H_2$	$9.27 \cdot 10^{16}$	-0.6	0

Continued	from	previous	page
Commuta	monn	previous	page

COMBUSTION REACTION OF HYDROGEN IN AIR REACTION MECHANISMS: THE CANTERA MECHANISM

Table 3. Elementary reactions and forward rate constants of the CANTERA mechanism with 18 reactions and 9 species. Units are: A: $[mol^{1-n} cm^{3n-3} s^{-1} K^{-b}]$; b: [-]; E_a: $[cal mol^{-1}]$.

A	b	Ea
1.17^*10^9	1.3	3626
$5.13 \cdot 10^9$	-0.816	16507
$1.8 \cdot 10^{10}$	1	8826
$2.10 \cdot 10^{19}$	1	0
$6.7 \cdot 10^{19}$	-1.42	0
$5 \cdot 10^{13}$	0	1000
$2.5 \cdot 10^{14}$	0	1900
$4.8 \cdot 10^{13}$	0	1000
$7.5 \cdot 10^{23}$	-2.6	0
$2.5 \cdot 10^{13}$	0	700
$1.3 \cdot 10^{17}$	0	45500
$1.6 \cdot 10^{12}$	0	3800
$1 \cdot 10^{13}$	0	1800
$6.7 \cdot 10^{19}$	-1.42	0
$1.7 \cdot 10^{13}$	0	47780
$6 \cdot 10^{8}$	1.3	0
$1.85 \cdot 10^{11}$	0.5	95560
$2 \cdot 10^{12}$	0	0
	$\begin{array}{c} A \\ 1.17^*10^9 \\ 5.13 \cdot 10^9 \\ 1.8 \cdot 10^{10} \\ 2.10 \cdot 10^{19} \\ 6.7 \cdot 10^{19} \\ 5.10^{13} \\ 2.5 \cdot 10^{13} \\ 2.5 \cdot 10^{13} \\ 7.5 \cdot 10^{23} \\ 2.5 \cdot 10^{13} \\ 1.3 \cdot 10^{17} \\ 1.6 \cdot 10^{12} \\ 1.10^{13} \\ 6.7 \cdot 10^{19} \\ 1.7 \cdot 10^{13} \\ 6.10^8 \\ 1.85 \cdot 10^{11} \\ 2 \cdot 10^{12} \end{array}$	$\begin{array}{c c c c c c } A & b \\ \hline 1.17^*10^9 & 1.3 \\ \hline 5.13 \cdot 10^9 & -0.816 \\ \hline 1.8 \cdot 10^{10} & 1 \\ \hline 2.10 \cdot 10^{19} & 1 \\ \hline 2.10 \cdot 10^{19} & -1.42 \\ \hline 5 \cdot 10^{13} & 0 \\ \hline 2.5 \cdot 10^{13} & 0 \\ \hline 2.5 \cdot 10^{13} & 0 \\ \hline 4.8 \cdot 10^{13} & 0 \\ \hline 7.5 \cdot 10^{23} & -2.6 \\ \hline 2.5 \cdot 10^{13} & 0 \\ \hline 7.5 \cdot 10^{23} & -2.6 \\ \hline 2.5 \cdot 10^{13} & 0 \\ \hline 1.3 \cdot 10^{17} & 0 \\ \hline 1.6 \cdot 10^{12} & 0 \\ \hline 1.6 \cdot 10^{12} & 0 \\ \hline 1.10^{13} & 0 \\ \hline 6.7 \cdot 10^{19} & -1.42 \\ \hline 1.7 \cdot 10^{13} & 0 \\ \hline 6.10^8 & 1.3 \\ \hline 1.85 \cdot 10^{11} & 0.5 \\ \hline 2 \cdot 10^{12} & 0 \\ \end{array}$

COMBUSTION REACTION OF HYDROGEN IN AIR REACTION MECHANISMS: COMPARISON BETWEEN DETAILED SCHEMES

Table 4. Elementary reactions and forward rate constants of the mechanisms by Miller, Mitchell, Smooke & Kee (1982) [4], Marinov, Westbrook & Pitz (1996) [1], and CANTERA. Units are: A: $[mol^{1-n} cm^{3n-3} s^{-1} K^{-b}]$; b: [-]; E_a: $[cal mol^{-1}]$.

Reaction	Miller	\cdot mechanis	sm	Marino	v mechai	nism	CANTERA mechanism		
	A	b	Ea	A	b	Ea	A	b	Ea
$H_2 + OH \rightleftharpoons H_2O + H$	2.16^*10^{18}	1.51	3430	$2.14*10^{8}$	1.52	3449	1.17^*10^9	1.3	3626
$H + O_2 \rightleftharpoons OH + O$	$2.65 \cdot 10^{16}$	-0.6707	17041	$2.02 \cdot 10^{14}$	-0.4	0	$5.13 \cdot 10^9$	-0.816	16507
$O + H_2 \rightleftharpoons OH + H$	$3.87 \cdot 10^4$	2.7	6260	$5.06 \cdot 10^4$	2.67	6290	$1.8 \cdot 10^{10}$	1	8826
$H + O_2 + M \rightleftharpoons HO_2 + M$	-	-	-	$1.05 \cdot 10^{19}$	-1.257	0	$2.10 \cdot 10^{19}$	1	0
$H + 2 O_2 \rightleftharpoons HO_2 + O_2$	$2.08 \cdot 10^{19}$	-1.24	0	-	-	-	$6.7 \cdot 10^{19}$	-1.42	0
$OH + 2O_2 \rightleftharpoons HO_2 + O_2$	$1.45 \cdot 10^{13}$	0	-500	$2.89 \cdot 10^{13}$	0	-497	$5 \cdot 10^{13}$	0	1000
	$5 \cdot 10^{15}$	0	17330						
$H + 2 HO_2 \rightleftharpoons OH + OH$	$8.4 \cdot 10^{13}$	0	635	$1.5 \cdot 10^{14}$	0	1000	$2.5 \cdot 10^{14}$	0	1900
$O + 2 HO_2 \rightleftharpoons O_2 + OH$	$2 \cdot 10^{13}$	0	0	$3.25 \cdot 10^{13}$	0	0	$4.8 \cdot 10^{13}$	0	1000
$H_2 + M \rightleftharpoons H + H + M$	$2.2 \cdot 10^{22}$	-2	0	$2.21 \cdot 10^{22}$	-2	0	$7.5 \cdot 10^{23}$	-2.6	0
$H + OH + M \rightleftharpoons H_2O + M$	$4.48 \cdot 10^{13}$	0	1068	$8.45 \cdot 10^{11}$	0.65	1241	$2.5 \cdot 10^{13}$	0	700
$\mathrm{HO}_2 + \mathrm{H} \rightleftharpoons \mathrm{H}_2 + \mathrm{O}_2$	-	-	-	-	-	-	$1.3 \cdot 10^{17}$	0	45500
$H_2O_2 + M \rightleftharpoons OH + OH + M$	$1.21 \cdot 10^{7}$	2	5200	$1.98 \cdot 10^{6}$	2	2435	$1.6 \cdot 10^{12}$	0	3800
$H_2O_2 + OH \rightleftharpoons H_2O + HO_2$	$2 \cdot 10^{12}$	0	427	2.4	4.042	-2162	$1 \cdot 10^{13}$	0	1800
	$1.7 \cdot 10^{18}$	0	29410						
$O + H + M \Longrightarrow OH + M$	$5 \cdot 10^{17}$	-1	0	$4.71 \cdot 10^{18}$	-1	0	-	_	_
$O + H_2O_2 + M \rightleftharpoons OH + HO_2$	$9.63 \cdot 10^{6}$	2	4000	$9.55 \cdot 10^{6}$	2	3970	-	-	-

Continued on the next page

COMBUSTION REACTION OF HYDROGEN IN AIR REACTION MECHANISMS: COMPARISON BETWEEN DETAILED SCHEMES

Table 4. Elementary reactions and forward rate constants of the mechanisms by Miller, Mitchell, Smooke & Kee (1982) [4], Marinov, Westbrook & Pitz (1996) [1], and CANTERA. Units are: A: $[mol^{1-n} cm^{3n-3} s^{-1} K^{-b}]; b: [-]; E_a: [cal mol^{-1}].$

Continued from previous page									
Reaction	Miller 1	nechani	ism	Marino	v mechai	nism	CANTERA mechanism		
	A	b	Ea	A	b E _a		A	b	Ea
$H + HO_2 \rightleftharpoons O + H_2O$	$3.97 \cdot 10^{12}$	0	671	$3.01 \cdot 10^{13}$	0	1721	-	-	-
$H + H_2O_2 \rightleftharpoons OH + H_2O$	$1 \cdot 10^{13}$	0	3600	$3.07 \cdot 10^{13}$	0	4217	-	-	-
$2 \text{ OH} + \text{M} \rightleftharpoons \text{H}_2\text{O}_2 + \text{M}$	$2.3 \cdot 10^{18}$	-0.9	-1700	$3.041 \cdot 10^{30}$	-4.63	2049	-	-	-
$H + O_2 + H_2 \Longrightarrow HO_2 + H_2$	-	-	-	$1.52 \cdot 10^{19}$	-1.133	0	-	-	-
$H + O_2 + N_2 \Longrightarrow HO_2 + N_2$	-	-	-	$2.031 \cdot 10^{20}$	-1.590	0	$6.7 \cdot 10^{19}$	-1.42	0
$H + O_2 + H_2O \Longrightarrow HO_2 + H_2O$	$1.126 \cdot 10^{19}$	-0.76	0	$2.1 \cdot 10^{23}$	-2.437	0	-	-	-
$H + O_2 + Ar \rightleftharpoons HO_2 + Ar$	$7 \cdot 10^{17}$	-0.8	0	-	-	-	-	-	-
$H_2 + O_2 \rightleftharpoons 2 OH$	-	-	-	-	-	-	$1.7 \cdot 10^{13}$	0	47780
$2 \text{ OH} \Longrightarrow \text{O} + \text{H}_2\text{O}$	$3.57 \cdot 10^4$	2.4	-2110	$3.57 \cdot 10^4$	2.4	-2112	$6 \cdot 10^8$	1.3	0
$O_2 + M \rightleftharpoons 2O + M$	$1.2 \cdot 10^{17}$	-1	0	$1.89 \cdot 10^{13}$	0	-1788	$1.85 \cdot 10^{11}$	0.5	95560
$2 \operatorname{HO}_2 \rightleftharpoons \operatorname{H}_2 \operatorname{O}_2 + \operatorname{O}_2$	$1.3 \cdot 10^{11}$	0	-1630	$4.2 \cdot 10^{14}$	0	-11980	$2 \cdot 10^{12}$	0	0
	$4.2 \cdot 10^{14}$	0	12000	$1.3 \cdot 10^{11}$	0	-1629			
$2 H + H_2 O \rightleftharpoons H_2 + H_2 O$	$6 \cdot 10^{19}$	-1.25	0	$6 \cdot 10^{19}$	-1.25	0	-	-	-
$2 \mathrm{H} + \mathrm{H}_2 \rightleftharpoons 2 \mathrm{H}_2$	$9 \cdot 10^{16}$	-0.6	0	$9.27 \cdot 10^{16}$	-0.6	0	-	-	-

Table 5. Elementary reactions and forward rate constants of the mechanism by Kim, Yetter & Dryer (1994) [5] with 19 reactions and 9 species. Units are: A: $[mol^{1-n} cm^{3n-3} s^{-1} K^{-b}]$; b: [-]; E_a: $[cal mol^{-1}]$.

	Reaction	$10\log A$	b	$10^{-3} \times E_a$
	$H_2 - O_2$ chain i	reactions		
1	$H + O_2 \rightleftharpoons O + OH$	14.28	0.0	16.44
2	$O + H_2 \rightleftharpoons H + OH$	4.71	2.67	6.29
3	$OH + H_2 \rightleftharpoons H + H_2O$	8.33	1.51	3.43
4	$O + H_2O \Longrightarrow OH + OH$	6.47	2.02	13.40
	$H_2 - O_2$ dissociation/reco	mbination	n reacti	ons
5	$H_2 + M \rightleftharpoons H + H + M$	19.66	-1.40	104.38
	$H_2 + Ar \rightleftharpoons H + H + Ar$	18.77	-1.10	104.38
6	$O + O + M \rightleftharpoons O_2 + M$	15.79	-0.50	0.00
	$O + O + Ar \rightleftharpoons O_2 + Ar$	13.28	0.0	-1.79
7	$O + H_2 \rightleftharpoons OH + H$	18.67	-1.0	0.00
8	$O + OH + M \rightleftharpoons H_2O + M$	22.35	-2.0	0.00
	$H + OH + Ar \rightleftharpoons H_2O + Ar$	21.92	-2.0	0.00

Continued on the next page

Table 5. Elementary reactions and forward rate constants of the mechanism by Kim, Yetter & Dryer (1994) [5] with 19 reactions and 9 species. Units are: A: $[mol^{1-n} cm^{3n-3} s^{-1} K^{-b}]$; b: [-]; E_a: $[cal mol^{-1}]$.

	Reaction	$10\log A$	b	$10^{-3} \times E_a$
	Formation and consu:	mption of	$f HO_2$	
9	$H + O_2 + M \rightleftharpoons HO_2 + M$	19.79	-1.42	0.00
	$H + O_2 + Ar \rightleftharpoons HO_2 + Ar$	15.18	0.0	-1.00
	$\mathrm{H} + \mathrm{O}_2 \rightleftharpoons \mathrm{HO}_2$	13.65	0.0	0.00
10	$HO_2 + H \rightleftharpoons H_2 + O_2$	13.82	0.0	2.13
11	$HO_2 + H \rightleftharpoons OH + OH$	14.23	0.0	0.87
12	$HO_2 + O \rightleftharpoons O_2$	13.24	0.0	-0.40
13	$HO_2 + OH \rightleftharpoons H_2O + O_2$	16.28	-1.00	0.00

Continued from previous page

Continued on the next page

Table 5. Elementary reactions and forward rate constants of the mechanism by Kim, Yetter & Dryer (1994) [5] with 19 reactions and 9 species. Units are: A: $[mol^{1-n} cm^{3n-3} s^{-1} K^{-b}]; b: [-]; E_a: [cal mol^{-1}].$

	Reaction	$10\log A$	b	$10^{-3} \times E_a$
	Formation and consump	tion of H	$_2O_2$	
14	$HO_2 + HO_2 \Longrightarrow H_2O_2 + O_2$	14.62	0.0	11.98
		11.11	0.0	-1.629
15	$H_2O_2 + M \Longrightarrow OH + OH + M$	17.08	0.0	45.50
	$H_2O_2 + Ar \rightleftharpoons OH + OH + Ar$	16.28	0.0	43.00
	$H_2O_2 \rightleftharpoons OH + OH$	14.47	0.0	48.40
16	$H_2O_2 + H \rightleftharpoons H_2O + OH$	13.00	0.0	3.59
17	$H_2O_2 + H \rightleftharpoons H_2 + HO_2$	13.68	0.0	7.95
18	$H_2O_2 + O \rightleftharpoons OH + HO_2$	6.98	2.0	3.97
19	$H_2O_2 + OH \Longrightarrow H_2O + HO_2$	12.00	0.0	0.00
		14.76	0.0	9.56

Continued from previous page

Reduced kinetic scheme for hydrogen-air combustion by Lu, Ju & Law (2001) [6]:

$$O + H_2 \Longrightarrow H + OH$$
 (20)

$$H + O_2 \Longrightarrow O + OH$$
 (21)

$$OH + H_2 \Longrightarrow H + H_2O$$
 (22)

$$H_2 + M \rightleftharpoons H + H + M \tag{23}$$

Reactions (20) to (22) are H_2-O_2 chain reactions. Reaction (23) is a H_2-O_2 recombination reaction.

Figure 4. Comparison of the temperature and species flame structure as predicted by the reduced mechanism of Lu, Ju & Law (2001) [6] and the detailed mechanism of Kim, Yetter & Dryer (1994) [5] for a stoichiometric H_2 -air flame at 1 atm.

Figure 5. Comparison of the laminar burning velocity as predicted by the reduced mechanism of Lu, Ju & Law (2001) [6] and the detailed mechanism of Kim, Yetter & Dryer (1994) [5] for a stoichiometric H_2 -air flame at 1 atm.

References

- Marinov N.M., Westbrook C.K., and Pitz W.J. Detailed and global chemical kinetics model for hydrogen. In S.H. Chan, editor, *Transport Phenomena in Combustion*, volume 1, pages 118–129, Washington, DC, 1996. Taylor & Francis.
- [2] Law C.K. Propagation, structure, and limit phenomena of laminar flames at elevated pressures. Combustion Science and Technology, 178:335–360, 2006.
- [3] Christiansen E.W., Law C.K., and Sung C.J. Steady and pulsating propagation and extinction of rich hydrogen-air flames at elevated pressures. *Combustion and Flame*, 124:35–49, 2001.
- [4] Miller H.P., Mitchell R., Smooke M., and Kee R. Towards a comprhensive chemical kinetic mechanism for the oxidation of acetylene: comparison of model predictions with results from flame and shock tube experiments. In *Proceedings of the Nineteenth Symposium (International) on Combustion*, pages 181–196, Pittsburgh, 1982. The Combustion Institute.
- [5] Kim T.J., Yetter R.A., and Dryer F.L. New results on moist CO oxidation: high pressure, high temperature experiments and comprehensive kinetic modeling. In *Proceedings of the Twenty-Fifth Symposium (International) on Combustion*, pages 759–766, Pittsburgh, 1994. The Combustion Institute.
- [6] Lu T., Ju Y., and Law C.K. Complex CSP for simplifying kinetics. Combustion and Flame, 126:445–455, 2001.