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Abstract

An exact algebraic expression for the upper limit value of the explosion constant of gaseous fuels, Kmax, is derived by using a two-zone

model for the adiabatic combustion in closed vessels. The expression is formulated in terms of the mean specific heat ratio of the unburned

reactants �gu and introduces the concept of an apparent specific heat ratio of the burned products gb. Computational data are presented for a set

of representative fuels and for a range of equivalence ratio’s, initial pressures and initial temperatures. A comparison of these data with

correlations from literature shows that one correlation in particular is in close agreement with the exact result. This one-parameter correlation

is based upon the almost linear relationship between the fraction of burned mass and the pressure, a relationship which is taken from the

original work of Lewis and von Elbe. Based upon this theoretical work, formulas are suggested that can be used to estimate the explosion

constant of fuel/air mixtures with a minimum level of computational effort. In addition, because the derivation in this paper is fairly

straightforward and because the resulting expression is rather simple, the analysis presented in this paper can be used in combustion courses

as an exercise in thermodynamics and as an illustration of the concept of the flame speed.

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Combustible mixtures of air, and fuel gases or fuel

vapors are often formed in industry, e.g. during the course of

venting storage tanks or flaring of waste gases. The volumes

that are involved in these operations are usually very large

and the risk of accidental ignition, which can lead to

destructive explosions is usually high. Safeguarding the

infrastructure for excess damage in case of an accidental

explosion involves, for instance, the placement of vents in

the walls of the confinement. The key parameters for the

design of such measures are the maximum pressure and the

maximum rate of pressure rise that would occur if

the mixture were to be ignited. The maximum rate of

pressure rise depends upon the shape and size of the mixture

confinement. Experiments in explosion vessels have
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indicated that for most practical applications, the maximum

rate of pressure rise follows a cubic-root law

dP

dt
maxV1=3 Z constant Z K
�� (1)

This observation has lead to the definition of the parameter

K which has been named explosion constant as well as

deflagration index in the open literature. Two names are

common: Kg is used for gases and Kst is used for dusts.

Models for predicting the maximum theoretical limit

for K, i.e. Kmax, have been published in the literature. The

maximum value is obtained for adiabatic combustion. Both

Bradley and Mitcheson (1976) and Dahoe, Zevenbergen,

Lemkowitz, and Scarlett (1996) present analytical

expressions for the rate of pressure increase during

combustion in a closed spherical vessel with central

ignition. These expressions are both based upon a two-

zone model which was previously developed by Lewis and

von Elbe (1951). Dahoe et al. obtained a closed algebraic

expression for Kmax
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Kmax Z ð36pÞ1=3ðPmax KP0Þ
Pmax

P0

� �1= �gu

Sf (2)

where P0 and Pmax are, respectively, the initial and

maximum pressure within the combustion vessel, Sf is the

flame speed at maximum pressure and �gu is the average

specific heat ratio of the unburned reactants. Cashdollar

(2000) proposes a simpler expression which avoids the use

of �gu

Kmax Z 4:84ðPmax KP0Þ
Pmax

P0

Sf (3)

where 4.84z(36p)1/3. The model that is used to arrive at

these two expressions is based upon assumptions that are

somewhat restrictive in nature. The specific heats of

reactants and products are assumed to remain constant and

combustion is to take place within a spherical vessel.

Moreover, these models do not contain the factor (ru/rb)

which shows up in other models as an important parameter.

A survey of mainstream graduate textbooks on combus-

tion, (e.g. Bartok & Sarofim, 1991; Borman & Ragland,

1998; Glassman, 1987; Kuo, 1986; Turns, 2000; Williams,

1985), shows that a discussion on K is absent in graduate

level combustion teaching. On the other hand, discussions

of a somewhat similar concept, the flame quenching

distance, is usually presented. Both concepts can be used

to illustrate the phenomena that are associated with

travelling combustion waves. A reason why a discussion

on K may not be included is that the two-zone model as it

was introduced by Lewis and von Elbe is rather lengthy and

misses somewhat the elegance of current two-zone models

that have recently been presented within the scope

of modelling internal combustion engines (Borman &

Ragland, 1998).

Reference handbooks for engineers in the field, (e.g.

Bartknecht, 1993), usually give tables of K for different

fuels and for a variety of ranges of additional constraints and

boundary conditions such as stoichiometry and initial

pressure. However, they do not provide algebraic formulas

to compute the explosion constant for a variety of condi-

tions. Such formulas could be used, for example, to estimate

the non-linear behavior of K with the mixing ratio of fuel

mixtures or to quickly estimate the effect of stoichiometry,

pressure and initial temperature.
2. Adiabatic two-zone model of closed volume

combustion

Consider a closed volume V that at time t is split into two

zones separated by a thin flame. Vu and Mu are the volume

and mass of the zone in front of the flame that contains the

unburned reactants. Likewise, Vb and Mb refer to the zone

that contains the combustion products. This model has been

called thin-flame model as well as two-zone model in the

literature. Along with the assumption that the combustion
occurs in an infinitely thin flame, the other assumptions in

this model are:
†
 Both the reactants and products behave as ideal gases.
†
 Adiabatic combustion.

These assumptions are less restrictive than those that are

employed in the model by Dahoe et al. (1996)

Within a closed volume, the total mass, total volume and

total internal energy are constant. These conditions can be

expressed as follows

Mu CMb Z M or
dMu

dt
ZK

dMb

dt
(4)

and

Vu CVb Z V or
dVu

dt
ZK

dVb

dt
(5)

and

Uu CUb Z U (6)

The mass exchange between the two zones is by definition

of the flame speed Sf, given by:

dMu

dt
ZKruAfSf (7)

These equations can be used in combination with the

assumption of ideal gas behavior to find an expression

for the rate of increase of the combustion products volume

VbZMbvb

dVb

dt
Z vb

dMb

dt
CMb

dvb

dt

Z vb K
dMu

dt

� �
CVb

1

vb

dvb

dt

� �

Z AfvbruSf CVb

1

Tb

dTb

dt
K

1

P

dP

dt

� �

Z AfvbruSf K
Vb

gb

1

P

dP

dt

� �
(8)

where gb is related to the ratio of the relative change of

products temperature to the relative change of pressure in a

similar fashion as the specific heat ratio:

P

Tb

dTb

dP
twz Z

gb K1

gb

���� (9)

gb is only marginally greater than 1. For instance, for the

combustion of a stoichiometric methane/air mixture in a

closed vessel, gb changes from 1.1 at the start of the

combustion to 1.06 at the end. Rearranging Eq. (8) yields

the first rate equation for Vb:

1

Af

dVb

dt
Z vbruSf K

Vb

gbAf

1

P

dP

dt

� �
(10)
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A second rate equation for Vb can be derived from the

energy equation for the unburned reactants. Under the

assumption of adiabatic compression of the reactants zone,

subject to mass exchange, the energy equation can be

written as:

dðMuuuÞ

dt
ZKP

dVu

dt
Chu

dMu

dt

Expanding the term on the left and rearranging the equation

yields:

Mu

duu

dt
ZKP

dVu

dt
C ðhu KuuÞ

dMu

dt

ZKP
dðMuvuÞ

dt
CPvu

dMu

dt
ZKPMu

dvu

dt

This last expression states that the unburned reactants are

subject to an isentropic compression. Therefore:

dvu

dt
ZK

vu

guP

dP

dt

This expression can be inserted into the rate expression for

the reactants volume Vu

dVu

dt
Z vu

dMu

dt
CMu

dvu

dt
ZKAfSf K

Vu

gu

1

P

dP

dt

which then yields a second rate equation for the products

volume:

1

Af

dVb

dt
Z Sf C

Vu

guAf

1

P

dP

dt
(11)

Eliminating the rate of volume increase from Eqs. (10) and

(11) yields the evolution equation for the pressure:

1

P

dP

dt
Z

1

Vu=gu CVb=gb

Afðvbru K1ÞSf (12)

This equation has a rather simple interpretation which

becomes evident by rewriting it as:

Vu

guP

dP

dt
C

Vb

gbP

dP

dt
Z Afðvbru K1ÞSf

The term on the right hand side represents the net rate of

gas volume increase by combustion. This volume increase is

absorbed by a pressure rise within the volume of unburned

reactants (first term on the left hand side) and by a pressure

rise within the volume of products (second term on the left

hand side). The apparent similarity between gu and gb is

superficial. Whereas gu is a unique thermodynamic property

of the reactants only, gb is a thermodynamic property of

the reactants/products mixture and has meaning only within

the scope of the two-zone model. The parameter gb is

defined by Eq. (9) and varies during the progression of the

combustion. According to Bradley and Mitcheson (1976),

several researchers assumed that this parameter is equal to

the specific heat ratio of the products, gb,frozen, if as the

temperature rise of the products zone were the mere result

of an adiabatic compression at frozen equilibrium.
However, for stoichiometric mixtures of hydrocarbon

fuels, gb,frozen is of the order of 1.25 which is much greater

than gb. Numerical computations have revealed that gb is

still substantially smaller than gb,shift with the latter

parameter defined for a mixture subject to shifting chemical

equilibrium. For stoichiometric mixtures of hydrocarbon

fuels, gb,shift is of the order of 1.17. The existence of the

two zones with a compressible reaction zone and a

compressible products zone, subject to a shifting equili-

brium, provides an extra degree of freedom for the chemical

equilibrium to settle in the explosion vessel. According to

Le Chatelier’s principle, this global equilibrium will settle

in order to maximally resist the change of state brought

by the progression of the combustion. It turns out that

the combustion products are more elastic in a two-zone

environment than in a mono-zone environment. gb is a

unique thermodynamic property of the fuel/air/products

mixture within the context of the two-zone model and

cannot be computed by a model different from the defining

two-zone model itself.

Within the limitations set by the assumption of adiabatic

combustion and the two-zone model, Eq. (12) is exact. This

equation should be compared to the expression that was

derived for central ignition in a spherical vessel by Bradley

and Mitcheson (1976) and later by Dahoe et al. (1996):

dP

dt
Z

3ðPmax KP0Þ

Rvessel

1K
P0

P

� �1=gu Pmax KP

Pmax KP0

� �2=3
P

P0

� �1=gu

Sf

(13)

This latter expression is seemingly more practical because

the right hand side contains only the pressure. However, it is

significantly different from the exact rate equation, Eq. (12),

because this latter equation suggests that the rate of pressure

increase is proportional to the pressure itself, whereas Eq.

(13) suggests a different dependence. The reason for this

difference is that to arrive at this latter expression, one must

additionally assume that:

Mb

Mu CMb

Z
PKP0

Pmax KP0

(14)

This remarkable equation, originally derived by Lewis and

von Elbe (1951) is in fact only an approximation and use of

it leads to small errors which, as will be shown, can be

corrected for in a simple manner.

Adiabatic combustion results in a maximum pressure at

the end of combustion. Because the rate of pressure increase

is proportional to pressure, the explosion constant is

maximal at the end of combustion where Vb/V, Vu/0

and P/Pmax. Using the definition equation for K and the

rate equation, Eq. (12) yields

Kmax Z
Of

V2=3
gbðvbru K1ÞPmaxSf (15)

Of is the final flame area just before the flame is

extinguished. For central ignition of premixed gases in



Fig. 1. Mean reactants specific heat ratio �gu for selected fuel/air mixtures at

25 8C and 1 atm.
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closed spherical vessels, the ratio Of/V
2/3 is (36p)1/3Z

4.836. The formula above can be further written in other

terms. The densities can be written as

vb Z
1

rb

Z
V

M
Z

1

ru0

and ru Z ru0

Pmax

P0

� �1= �gu

where �gu is the mean heat capacity ratio of the reactants

along the path of isentropic compression from the start

of combustion to the end. With these relationships, the

K-expression for spherical vessels finally results in a

two parameter equation

Kmax Z 4:836gb

Pmax

P0

� �1= �gu

K1

� �
PmaxSf (16)

with �gu and gb as parameters. Sf is the flame speed at the

final phase of the combustion and can be estimated from

graphs or tables published in the literature, (e.g. Borman &

Ragland, 1998). Pmax is the pressure of the theoretical

final state which is the state that is in chemical equilibrium

with the initial state, constrained by constant volume and

constant internal energy. For a given fuel/air mixture,

equivalence ratio, initial temperature and initial pressure,

Pmax can be computed with a chemical equilibrium program.
Fig. 2. Apparent products specific heat ratio gb for selected fuel/air mixtures

at 25 8C and 1 atm.
3. Results and discussion

A numerical solution of the adiabatic two-zone model

with a constant flame speed has been performed using

software provided by the CHEMKIN II library (Kee,

Rupley, & Miller, 1994). The accompanying thermodyn-

amic database is the one that is made available online by

Burcat (2003). The model uses the VODE-solver (Brown,

Byrne, & Hindmarch, 1989) to numerically integrate

the combustion-rate equation, Eq. (7), while continuously

conserving mass, Eq. (4), volume, Eq. (5), and internal

energy, Eq. (6), to solve for the pressure and temperatures of

the reactants and products. Within the VODE-solver, the

implicit Adams method with functional iteration (no

Jacobian) is selected (method flagZ10) in combination

with a variable time step (itask parameterZ1) and a relative

error tolerance of 5!10K8. To compute the progress of

the volume of burned products, the initial value of this

volume must be set to a non-zero value. Numerical exercises

proved that the computed K factor is independent of this

initial value.

The parameters �gu and gb have been computed for

mixtures of air with methane, propane, hydrogen, acetylene

and methanol, and the results are shown in Figs. 1 and 2 with

the equivalence ratio as independent variable. The initial

temperature and pressure are respectively 298.15 K and

1 atm. The results indicate that the parameter �gu varies

substantially with the fuel and the mixing ratio. To obtain a

2% accuracy on Kmax, �gu needs to be estimated within an

accuracy better than 1.10%. From Fig. 1, it can be judged
that this is a rather challenging task if one does not have

access to all the necessary computer programs. On the other

hand, the parameter gb can be estimated from Fig. 2 with an

accuracy of about 2%. Because Kmax is linear in gb, this is

also the resulting uncertainty on Kmax.

Fig. 3 shows the ratio of Kmax/Sf for the different fuels as

a function of the stoichiometric ratio. The explosion

constant reaches a maximum for slightly rich mixtures

because these mixtures also show the highest combustion

temperature. Only for acetylene does Kmax/Sf continue to

increase. Methanol and propane show an almost identical

behavior.

The initial pressure has a negligible effect on both �gu and

gb. For a five-fold increase in pressure, �gu does not decrease

more than 0.01% and gb does not increase more than

0.4%. Whereas this effect can readily be understood for



Fig. 3. The relative explosion constant Kmax/Sf of selected fuel/air mixtures

at 25 8C and 1 atm.

Fig. 4. Comparison of different correlations with the exact theoretical

solution, different fuels.
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the unburned reactants, the minor increase of gb can be

explained as follows.

The adiabatic flame temperature of hydrocarbon com-

bustion increases with pressure because the increase of

pressure disfavors the dissociation of heavy combustion

products such as CO2 and H2O into lighter products. As a

consequence, the specific heats of the product mixture

decrease and the specific heat ratio increases. However, this

effect is only important in the pressure range of 1 to 10 atm.

With closed volume combustion, high pressures outside

this range are readily obtained and this explains the small

effect on gb.

The initial temperature of the reactants mixture has a

strong effect on �gu and a slight effect on gb. Increasing the

initial temperature increases the end-of-combustion tem-

perature to a lesser extent and reduces the maximum

pressure almost inversely because of the likewise reduction

in initial mass. gb increases almost linear to the initial

temperature with d(gb)/dTz5!10K5. The reason for this

minor increase is the stronger reduction in �gu which

increases the elasticity of the reactants volume. As a

consequence, the products volume is less strained.

Eq. (15) shows that K is proportional to the flame speed

and the maximum pressure. The proportionality coefficient

in this equation includes the term (vbruK1). Bradley and

Mitcheson (1978) found the parameter (vbruK1)Sf to be the

single most important mixture parameter in the theory of

venting during explosions.

The two-parameter formula, Eq. (16), can be compared

to the other theoretical formulas that have been presented in

the literature. The one-parameter expression derived by

Dahoe et al. (1996) is given by Eq. (2) whereas the zero-

parameter expression by Cashdollar (2000) is given by

Eq. (3). Fig. 4 shows the comparison of these expressions in

comparison to the exact numerical solution. Whereas the

formula proposed by Cashdollar overestimates Kmax with
about 50%, the expression by Dahoe et al. systematically

overestimates Kmax with about 4%. The reason for this

systematic overestimation is that the Lewis and von Elbe

relationship, Eq. (14), systematically underestimates the

pressure for a given mass fraction. In order to understand

this systematic, it is necessary to revisit the Lewis and von

Elbe relationship.
4. The Lewis and von Elbe relationship revisited

Lewis and von Elbe (1951) studied the evolution of the

pressure in a closed volume combustion process and found

that

P KP0

Pmax KP0

zn (17)

where n is the molar fraction of burned products. The

original derivation of this relationship is omitted in all the

major text books on combustion and in all of the most

relevant publications. However, by using the two zone

model the derivation becomes rather straightforward. Under

the assumption that the number of moles of burned gas per

mole of unburned gas remains constant during the

combustion process, it can be shown that

Nu Z Nið1 KnÞ

Nb Z Nen
(18)

where Ni is the initial number of moles of unburned reagents

and Ne is the final number of moles of burned products. Nu

and Nb are, respectively, the actual number of moles of

unburned and burned gases. The pressure can be linked to

the number of moles using the ideal gas law. Applied to the

volumes of the two zones individually and to the total

volume, one arrives at
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PVu Z RNuTu PiV Z RNiTi

PVb Z RNbTb PeV Z RNeTe

PV Z RðNuTu CNbTbÞ

(19)

where the indices i and e refer to the initial and final

condition, respectively. Using the concept of n, one can

rewrite this last expression as:

PV

R
Z NuTu CNnTb Z Nið1 KnÞTu CNenTb

Z NiTu CnðNeTb KNiTuÞ (20)
Tu KTi

Ti

Z
P

Pi

� �ðguK1Þ=gu

K1z
1

2
C

1

2

Pmax

P0

� �ðguK1Þ=gu

K1z

Te KTb

Te

Z 1 K
P

Pe

� �ðgbK1Þ=gb

z1 K
1

2
C

1

2

P0

Pmax

� �ðgbK1Þ=gb

z

Using the expressions for PiZP0 and PeZPmax, one arrives

at:

P KP0

Pmax KP0

Z
NiðTu KTiÞCnðNeTb KNiTuÞ

NeTe KNiTi

Z n C
ð1 KnÞNiðTu KTiÞKnNeðTe KTbÞ

NeTe KNiTi

zn (21)

Bradley and Mitcheson (1976) were the first to use the

Lewis and von Elbe relationship in its approximative form

in their analysis. However, they took n to be the mass

fraction of burned products instead of the molar fraction.

Dahoe et al. (1996) made the same approximation. Fig. 5

shows the molar and mass deficits from the Lewis and von
Fig. 5. Molar or mass deficit (see text for definitions) for a stoichiometric

methane/air mixture at 20 8C and 1 atm. initially.
Elbe relationship during the combustion of a methane/air

mixture. The molar deficit is defined as (PKP0)/(PmaxK
P0)KNb/(NuCNb) whereas the mass deficit is (PK
P0)/(PmaxKP0)KMb/(MuCMb). Because the mass deficit

is larger than the molar deficit, the error in using the

approximative form for the mass fraction is somewhat

larger.

The nominator of the second term on the right hand side

of Eq. (21) is a difference of two terms that are both zero for

nZ0 and nZ1. As shown in Fig. 5, the nominator reaches a

maximum for nz1/2. An error analysis of the corrective

term can be made using first order approximations for nZ
1/2 with Pz0.5PmaxC0.5P0 and PmaxR5P0:

gu K1

gu

ffiffiffi
2

p
ln

1

2

Pmax

P0

� �

gb K1

gb

lnð2Þffiffiffi
2

p

(22)

In addition, the following relationship holds:

NeTe

NiTi

Z
Pmax

P0

(23)

A further analysis along this line shows that the second

term on the right hand side of Eq. (21) is of secondary order

when compared to n and shows also that the correction term

increases monotonically with Pmax/P0. The correction is

larger at higher explosion loads. This explains the

systematic error of the Dahoe equation for K, Eq. (2).

The error in predicting the pressure evolution when using

the approximative form of the Lewis and von Elbe

relationship is somewhat larger than the numbers in Fig. 5

would suggest, because the rate analysis involves the

derivatives. As the combustion proceeds towards the end,

the pressure strives towards its final equilibrium value and

the rate of pressure increase at the end of the combustion is

predicted too high by models that rely on the approximative

equation. On the other hand, these models predict a too low

rate of pressure increase in the beginning phase of the

explosion. Interestingly, Dahoe and de Goey (2003) used a

two-zone model to extract laminar flame speeds from closed

volume combustion experiments with the Dahoe bomb, as

described by Eckhoff (2003). They fitted the model to

experimental pressure–time curves in the initial stage of the

explosions. The derived flame speeds are found to be

systematically too high when compared to other exper-

imental values. Dahoe and de Goey report a systematic error

of about 5% for low flame speeds to 10% for high flame

speeds. This discrepancy is consistent with the manner in

which the Lewis and von Elbe relationship underestimates

the pressure. It may be verified that at low flame speeds, for

example, about 4% out of the 5% error may be attributed to

the use of the approximative form of the relationship.
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5. Further discussion and recommended correlation

In order to predict the adiabatic limit value for K for a

given fuel/air mixture and initial conditions, the correct

equation, Eq. (16), could be used. However, this correlation

employs the two mixture parameters gb and �gu, next to Sf

and Pmax. These former parameters may be hard to estimate

without the necessary computer programs. To develop a

useful correlation for predicting the K value, computer

simulations of adiabatic closed volume combustion have

been carried out for five fuels: CH4, C3H8, H2, C2H2 and

CH3OH. Twenty equally spaced values between 0.1 and 2.0

are used for the equivalence ratio, five equally spaced values

between 1 and 5 are used for the initial pressure and five

equally spaced values between 100 and 500 8C are used for

the initial temperature. The computed K values are used to

develop empirical correlations that are derived from the

theoretical correlations.

A zero parameter correlation, i.e. the Cashdollar

expression, can be tuned to a better fit by adjusting the

proportionality coefficient:

Kmax Z
4:836

1:492
ðPmax KP0Þ

Pmax

P0

Sf

This correlation fits the theoretical results with a relative

error with a mean value of zero and a standard deviation of

10.2%.

The Dahoe equation for K, containing one parameter,

was fitted with a least-squares procedure to the computed

data to give

Kmax Z
4:836

1:041
ðPmax KP0Þ

Pmax

P0

� �1= �gu

Sf

in which �gu is computed exactly by the computer program.

This correlation fits the theoretical results for these five fuels

with a mean error of zero and a standard deviation of only

1.29%. This equation still needs one parameter, �gu, which

may be hard to estimate. However, a mean value of �gu of

1.33 may be used to yield

Kmax Z
4:836

1:040
ðPmax KP0Þ

Pmax

P0

� �1=1:33

Sf (24)

which gives a relative error with a mean value of zero and a

standard deviation of 4.5%.

Finally, the correct equation, Eq. (16), could also be

simplified by using the mean values for gbZ1/0.900 and

�guZ1:330 which gives

Kmax Z
4:836

0:900

Pmax

P0

� �1=1:33

K1

� �
PmaxSf (25)

This equation fits the theoretical results with a mean

relative error of zero and a standard deviation of 5.4%.

This error is somewhat larger than the zero-parameter

version of the Dahoe expression. However, this
correlation does capture the underlying physics somewhat

better because of the presence of the (ru/rbK1) term as

explained earlier.

The two zero-parameter equations, Eqs. (24) and (25),

can be recommended for practical use. For a given fuel/air

mixture, equivalence ratio, initial temperature and initial

pressure, Pmax can be computed with a chemical equilibrium

program, such as the CEA program made available online

by NASA (McBride, 2004).
6. Conclusion

A review and an analysis of expressions for the

theoretical adiabatic limit value for the explosion constant

K of fuel/air mixtures is presented. An exact expression has

been derived that employs two fluid properties: the ratio of

the specific heat of the unburned reactants and an apparent

specific heat ratio of the burned products. Theoretical

K-values have been computed for a set of representative

fuels and are fitted to the theoretical expressions. As a result,

two zero-parameter expressions are presented that fit the

theoretical data with an accuracy of 5%. These closed

correlations are fairly simple to use and can be used to

rapidly estimate the explosion constant of a fuel/air mixture.

In addition, the analysis presented in this paper is of

intermediate graduate level and can be used in combustion

courses to illustrate the phenomena of traveling combustion

waves.
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