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Aims 

• To understand required properties for the electrolytes and 
anodes 

• To understand the properties (and mechanisms underlying 
the properties) of the most common materials for 
electrolytes and anodes 

• To be aware of problems with the common materials 
• To have a broad awareness of research trends and the 

search for improved materials. 
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Requirements for an electrolyte 

• High ionic conductivity (how high?) 
• Low electronic conductivity (how low?) 
• Stable and constant properties over wide range of oxygen 

activity and temperature 
• Stable over long times (>10,000 h) 
• Unreactive towards electrodes and other components 
• Good mechanical properties 
• “Easy” to process into a leak-free membrane 

Review: V.V. Kharton, F.M.B. Marques and A. Atkinson,  
Solid State Ionics, 174, 2004, 135. 
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Ionic conductivity 

• Metals (and semiconductors) conduct by movement of 
electrons 
 

• Ionic conductors by movement of ions through the lattice  
 

• Solid oxygen ion conductors by movement of oxygen ions 
through metal oxide lattice 
 

• Mixed conductors conduct by the movement of oxygen ions 
and electrons 
 

• Materials are ceramics made up of small crystals fused 
together by sintering and contain grain boundaries. 
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Oxygen Ion conductors 

Schematic lattice of Metal Oxide (MO) 

Metal ion 
Charge 2+ 

Oxygen ion 
Charge 2- 

By altering the composition using metal ions of lower charge (e.g. A+) 
we can introduce oxygen vacancies.  These allow the movement of 
oxygen ions in the metal oxide lattice 
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Kröger-Vink notation for point defects 

Lattice species Symbol Effective charge
(electron units)

Metal and oxygen ions on
normal sites MM

x or OO
x Uncharged

Metal interstitial ion Mi
•• 2 positive

Oxygen interstitial ion Oi’’ 2 negative
Metal vacancy VM’’ 2 negative
Oxygen vacancy VO

•• 2 positive
Higher valency cation (donor) DM

• 1 positive
Lower valency cation (acceptor) AM’ 1 negative
Conduction electron e’ 1 negative
Electron hole h• 1 positive
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Reactions involving point defects 
Rules 
•Maintain electrical neutrality 
•Mass balance 
•Stoichiometric site ratio 

Doping to create oxygen vacancies 
gives oxygen conductivity 

×
2 3 2 Zr O OY O  (in ZrO  2Y +V +3O) ′→ 

Reduction of a variable valency ion 
gives n-type semiconduction 

1
2 O 22(CeO )  V +2e + O′→ 

electron can be regarded as 
temporary Ce3+ ion 
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Defect equilibrium calculations 

O2 V n  = 


1
2 O 22(CeO )  V +2e + O′→ Defect reaction 

Electrical neutrality (undoped) 

1
22

O O2V n P K  = 
Equilibrium constant 

Electrical neutrality (Gd-doped) [ ]O Ce2 V Gdn ′  = + 


11
64

O2 O2  (doped)  or   (undoped) n P n P−−∝ ∝
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Oxidation, reduction and electronic conductivity 
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Electrons and holes have higher mobilities than ions 
Variable valence metal ions (e.g. transition metals) are bad for solid 
oxide electrolytes 
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Ionic transference number 
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Ionic Conductivity 

( )
2

2
O O 0 0V 1- V exp mHqN a

kT kT
σ γ ν −∆    =       

 

Equation for conductivity contains concentration of vacancies plus a term 
which indicates how easily they move through the crystal lattice. 

∆Hm 

Position 

Energy 

•Ions jump from site to site 
•Requires a vacant site to 
jump into 
•Jumps biased by electric 
field 
•Jumps require thermal 
energy to get over energy 
barrier. 
•Need low ∆Hm for high ionic 
conductivity 

∆Hm is “migration enthalpy” 
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Ionic Conductors for SOFC  
•Arrhenius plot is convenient for comparing electrolytes 
•Strictly should plot σT vs 1/T but easier to understand plot of σ vs 1/T 
•Aqueous 1M NaCl solution has conductivity of 0.1 S cm-1 at 25°C 
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Current density (A cm-2) 

P
ow

er
 d

en
si

ty
 (W

 c
m

-2
) 

0.7 

1 

Useful power = 0.7 W cm-2 

Peak power 

SOFC performance goal 
G
H

∆
∆

=

0
Gemf V

neF
∆

= = −

0

V
V

=

Current density (A cm-2) 

V per cell 

V0~1V 

0.7 

1 

Reversible electrical efficiency   

Operating electrical  efficiency   

( )eionac RRiVV +++=− ηη0

ASR = (V0-V)/I = 0.3 ohm cm2 

Maximum tolerable from a single source = 0.15 ohm cm2  
Single cell data do not usually include interconnection losses 
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Practical constraints for SOFC electrolyte selection 

B. Steele, Phil. Trans. R. Soc. London A (1996) 
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Fluorite structure materials 

• Based on metal oxides with the 
formula MO2  (M4+) 
 

• “Doped” with oxides with lower 
metal ion charge (usually M3+) 
e.g. Y2O3 
 

• Simple  cubic structure. 
 

• Leads to materials with very 
high conductivities 
 

• Two common  Materials are; 
– Zr1-xYxO2-δ (YSZ) 
– Ce1-xGdxO2-δ (CGO) 
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ZrO2 needs to be stabilised in cubic form 

Cubic needs 9 mol % Y2O3 
 
Or 18 mol % YO1.5 
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Which is best trivalent dopant for zirconia? 

•Y is most commonly used 
•Sc gives higher 
conductivity,but is more 
expensive. 
•Important criterion is that 
dopant should have similar 
size to Zr4+ 
 
 

• 96.5 kJ mol-1 = 1 eV atom-1 

Arachi et al, Solid State Ionics 121 (1999) 133 

Sc3+ 
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How much dopant to add? 

 
Arachi et al, Solid State Ionics (1999) 

x in (ZrO2)1-x.(Ln2O3)x •Adding more trivalent dopant 
eventually is counter productive 
 
•Oxygen vacancies and dopant 
ions have opposite effective 
charge 
 
•They attract each other and form 
immobile defect clusters at high 
concentrations 
 
•Hence 8YSZ is popular 

1000°C 
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Sc-doped zirconia 

Politova and Irvine, Solid State Ionics 168 (2004) 153 

Co-doping required 
to suppress crystal 
transformation 



Double-doped ScSZ 

(1M10Sc)O3.89ZrO2 

Wide choice of co-dopant 

S. Omar et al., J Am Ceram Soc, 95 (2012) 1965 
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Alternatives to zirconia 

• Doped ceria 
• Doped LaGaO3 

• Other perovskites (LnBO3) 
• BIMEVOX 
• LAMOX (La2Mo2O9) 
• Ba2In2O5 (Brownmillerite structure) 
• Pyrochlores (Gd2Zr2O7) 
• Apatites 

 
 



Page 23 

Dopant selection for CeO2 
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Eguchi et al, Solid State Ionics (1992) 

Kharton et al, J. Mat. Sci. (2001) 
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Electronic conductivity in CGO 
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•n-type electronic conduction dominant in SOFC fuel environment above 570°C 
•Caused by Ce4+ → Ce3+ 

•Also expands lattice leading to mechanical problems 

ionic 

Electronic in fuel 
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Effect of CGO reduction on SOFC performance 
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•Lowers efficiency at low power 
•Smaller effect on efficiency at typical cell voltage (0.7V) 
•Gets worse as temperature increases or electrolyte thickness decreases 
•Max operating T for doped ceria is 600°C 
•Can use a thin layer of ScSZ to block electronic conduction (bi-layer electrolyte) 

500°C 
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Perovskite LSGM electrolytes 

•No electronic 
conductivity problem 
 
•Difficult to process 
 
•Interesting for 500 - 
800°C range 

Perovskite crystal structure 
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Apatite structures RE9.33+x(Si,GeO4)6O2+3x/2 
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La9SrGe6O26.5

La9.75Sr0.25Si6O26.875

La9.83Si4.5Al1.5O26

Nd10Si6O27

•CTE approx 9 ppm K-1 

•Anisotropic 
•Difficult to sinter 

Kendrick, et al. Chem. Commun., 2008, 715 

Oxygen “interstitial” diffusion along channels 
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La1.54Sr0.46Ga3O7.27 (melilite) 

X. Kuang et al., Nature Materials 7 (2008) 498 
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Proton-conducting oxides 

OOO2 H2OOVOH  →++ ×

•Protons incorporated from water 
vapour 
 
•Tend to be expelled at high 
temperatures 
 

Kreuer, Ann. Rev. Mat. Res. (2003) 



E. Fabbri et al., Adv. Funct. Mater. 2011, 21, 158–166 

600 °C 

Conductivity complex mixture of protons, oxygen vacancies and electron holes 
Claimed to be more stable than BCY in CO2 and 
Lower grain boundary resistance than BZY 

BaZr 0.7Pr 0.1Y 0.2O 3- δ 
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SOFC electrolytes are polycrystalline ceramics 

Grain boundaries act as extra series resistance to the crystal grains 
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AC Impedance Technique 

Components of the 
conductivity can be 
separated by 
measuring ac 
impedance 

 

Component due to 
grains (bulk) 

 

Component due to 
grain boundaries 

Real impedance 
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Model space charge in 8YSZ at 500°C 
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X. Guo and J. Maier, J. Electrochem. Soc., 148 (2001) E121. 
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Even “clean” grain boundaries are resistive compared with lattice 

•Impurities such as Si can form resistive glassy films at 
grain boundaries 
•These have high resistance to ionic conduction 
•These critical impurities must be restricted to ppm levels 
•Scatter in reported electrolyte conductivities 
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Diffusion/conductivity in nanocrystalline YSZ 

G. Knoner et al., Proc. Nat. Acad. Sc. USA, 2003 

Diffusion along GBs 1000x faster than in lattice? Not supported by more recent work 

N.H. Perry et al., J Mater Sci (2008) 43:4684–4692 

Grain boundaries always reduce total conductivity of fast ion conductors 
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“Colossal” ionic conductivity of thin YSZ/SrTiO3 films? 

J. Garcia-Barriocanal, et al.  
Science 321, 676 (2008); 

Enhanced conduction along the 
YSZ/SrTiO3 interface 
 
Ionic or electronic? 
 
Not been repeated 
 
Strain and space charge effects 
at interfaces still not resolved 

Shown to be mainly electronic in more recent work 
A. Cavallaro et al., Solid State Ionics 181 (2010) 592–601 



Summary for electrolytes 
• Target conductivity is 0.01 S cm-1 

• YSZ most popular 
• ScSZ better for lower temperatures (> 600 °C) 
• Ceria (Gd or Sm doped) good for lower T (500 - 600°C) 

– Needs electronic blocking layer 

• LSGM popular in Japan 
• Other contenders so far do not offer sufficient advantage 

– Have we reached a limit? 

• Grain boundaries are an important source of extra 
resistance 
– Must keep them clean 
– Nano crystalline electrolytes have no advantage 

• Sr and Ba zirconates and cerates are viable proton 
conducting electrolytes 
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Thank you for your attention! 
 

Questions on electrolytes? 
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Requirements for electrodes 
• Essential 

– High ionic conductivity (how high?) 
– High electronic conductivity (how high?) 
– Electrocatalytic for electrode reaction (high concentration of active sites) 
– Porous for gas access 
– Stable over long times (>10,000 h) in fuel conditions 
– Unreactive towards electrolyte and other components 
– Easy to fabricate 

 

Reviews for anodes: A. Atkinson et al., Nature Materials 3 (2004) 17 
W.Z. Zhu and S.C. Deevi, Materials Science and Engineering A, 362 (2003)228. 

•Desirable 
–Good thermo-mechanical properties (especially when also used as cell 
support) 
–Tolerant of vapour-borne impurities (e.g. S for anodes or Cr for cathodes) 
–Anodes should be able to cycle between reducing and oxidising conditions 
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Triple phase boundary electrodes (Ni/YSZ cermet) 

Electrocatalyst (Ni) has high electronic 
conductivity, but low ionic conductivity 

 
Reaction site is “at” triple phase boundary 

(gas-electrocatalyst-electrolyte) or TPB 

electrolyte 

H2 

O2- 

e- 

H2O 
el

ec
tro

ca
ta

ly
st

 

•Both ionic and electronic components 
must percolate (and pores) 
•Microstructure is important 

2
2 2 2H O H O e− −+ → +

H2O H2 

O2- 

e- 

Composites with a good ionic conductor 
(e.g. the electrolyte) often used to 
improve performance 
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Theory for porous single phase electrode (or 
fine structured composite) 

•Currently much activity in numerical modelling and composites 
•Active depth is typically 5-10 microns 

•Microstructure is important 

specific surface area 
tortuosity 

( )1 *
r

ASR
aD k
τ

ε
∝

−

porosity 

oxygen diffusion 
coefficient, 
Needs to be similar 
to electrolyte 

reaction rate 
constant per 
unit area of 
electrode 
material  
(∝ LTPB in 
composite) 

Adler, Lane, and Steele, J. Electrochem. Soc., 143 (1996) 3554 

electrolyte 
O2- 

e- 

H2 

H2O 

More detail when we look at cathodes 
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Effective thickness of anode 

Coarse microstructure 
NiO 7 µm, SDC 4 µm  

Fine microstructure 
NiO 0.5 µm, SDC 1 µm:  

900C 

H. Fukunaga et al., ECS Transactions, 7 (1) 1527-1531 (2007) 

Typically only approx. 20 µm is active for high performance anode 
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Electrochemical kinetics 
Overpotential of the electrode, η, is 
difference between actual electrode 
potential (current flowing) and 
equilibrium electrode potential (zero net 
current or open circuit)  

If overpotential causes the oxidation 
reaction to proceed  (η positive) it is 
anodic 
If overpotential causes the oxidation 
reaction to reverse (η negative) it is 
cathodic 

Typical polarisation curves for Ni/YSZ at 850°C 
C.J. Wen, et al., J. Electrochem. 

Soc. 147 (2000) 2076 

2Polarisation resistance (ohm cm ), pR
i
η

=
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Electrochemical kinetics 3-electrode measurement 

activation concentration ohmicη η η η= + +

Can also impose small AC signal to 
carry out impedance spectroscopy to 
try and look at different contributions. 
 

Reference electrode 
position needs care. 

i 

η 

counter 

reference working 

Butler-Volmer Gas diffusion Current collection 
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Electronic conductivity required for current collection 
Depends on cell design for resistance target < 0.1 ohm cm2 

20µ σ>0.02 S cm-1  
(similar to electrolyte) 

continuous  

5 mm channels σ>1,000 S cm-1 
20µ 

500µ 
5 mm channels 

Anode-supported 
σ>50 S cm-1 

0.5 mm mesh σ>100 S cm-1 
20µ Ionic conductivity needs to be similar to 

electrolyte i.e. > 0.01 S cm-1 
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Thermo-mechanical requirements 
Depends on cell design 
Thin layers are constrained by the stiffest layer in the structure 

Delamination: thin layer in compression 

h 

Cracking: thin layer in tension 

( )1
E Tσ ∆α∆
υ

=
−

( )2 21
c

Y h
G

E

σ ν−
<

cGT
Eh

∆α∆ <

For stability need: tough material, low elastic modulus, thin layers, low CTE mismatch 

Typically need ∆α < 1-2 ppm/K 
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Ni/YSZ anodes and anode supports 
•Ni/YSZ cermet is not a single material, but a 
whole family 
•Made by sintering a mixture of NiO and YSZ 
and then reducing NiO to Ni when cell is first 
operated 

Properties depend on: 
•Content of NiO and YSZ 
•Particle sizes of NiO and YSZ 
•Porosity (often increased by pore-formers) 
•Sintering temperature 
•Interconnected networks of Ni and YSZ 
must both percolate 
•CTE approx 12.5-13 ppm/K 

Conductivity at 1000°C 
S.K. Pratihar et al.,  SOFC-VI (1999) 513. 
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Ni/YSZ microstructure by FIB tomography 

Ni (green), YSZ (translucent/grey), 
and pores (blue) TPBs 

J.R. Wilson et al., Nature Materials (2006) 



Page 48 

Electrochemical model of tomographic TPB 
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“model” exchange currents (+) are from patterned Ni electrodes 
P. Shearing et al., Journal of Power Sources, 195 (2010) 4804 
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More detailed models of Ni/YSZ 

S. Gewies and W.G. Bessler, J. Electrochem. Soc. 155 (2008) B937. 
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Comparison with experiments 

Low frequency arc due to 
transport in gas channels 
 
Mid frequency arc due to gas 
transport in cermet pores 
 
High frequency arc due to 
electrochemical reaction 
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Hydrocarbon fuels 

Electrochemical reactions? 

CH4 + 4O2- → CO2 + 2H2O + 8e- 

CO + O2- → CO2 + 2e- 

H2 + O2- → H2O + 2e- 

Chemical reactions 
CH4 → C + 2H2  Carbon deposition 

CH4 + H2O → CO + 3H2 Steam reforming 

CH4 + CO2 → 2CO + 2H2 

CO + H2O ↔ CO2 + 2H2 Shift reaction 

2CO → C + CO2  Boudouard reaction 

Ni promotes C deposition 
therefore needs H2O/CH4 
> 2 

Only significant electrochemical reaction ? 
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H2 

first operation 
initial reduction 

NiO + H2 → Ni + H2O 

SOFC 

fuel failure 
fuel over-utilization 

high pO2 

oxidation 

Ni + 1/2O2 → NiO  

operation restored 
re-reduction 

NiO + H2 → Ni + H2O 

operation 

H2 + O-2 → H2O + 2e- 

Anode redox problems: Ni-based cermets 
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Ni cermet redox dimensional changes 

Ni NiO NiO 

volume -41% 
volume 
+69.6% reduction oxidation Single particle 

T. Klemensoe et. al, J. Electrochem. Soc., 152, A2186 (2005). 

NiO-YSZ Ni-YSZ 

little/negligible 
shrinkage 

~ 1% elongation 

oxidation strain 

NiO-YSZ reduction oxidation 
Anode composite 

Experiments 
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Microstructural design of Ni/YSZ for redox tolerance 

M. Pihlatie et al, J. Power Sources 193 (2009) 322 
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0.1% target 
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Poisoning by sulphur 

Reversible poisoning at low S concentrations 
NiS formation at higher concentrations 
Worse at lower temperatures (need S < 0.1 ppm at 750°C) 

S removal 

Y. Matsuzaki and I. Yasuda, Solid State Ionics 132 (2000) 261 
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Defects in transition metal perovskites e.g. La1-xSrxMO3 

Acceptor doping  ••
La O O2SrO 2Sr 2O V×′→ + +

Reduction •• 1
O O 22O V +2e O (g)× −→ +

Electronic •e hnull ′→ +
Schottky ••

La M OV V 3Vnull ′′′ ′′′→ + +
M valency change 

in this range in anode 
conditions gives low 
electronic conductivity   
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La0.75Sr0.25Cr0.5Mn0.5O3 p-type oxide anode 

S.W. Tao and J.T.S. Irvine, Nature Materials 2 (2003). 

Current collection problem (low electronic 
conductivity) 

Redox tolerant 
Resistant to C 
deposition 
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Doped SrTiO3 n-type oxide anodes  

Q. Ma et al. / Journal of Power Sources 195 (2010) 1920–1925 

Sr0.895Y0.07TiO3 
 
n-doping encourages Ti3+ on 
reduction 
 
Electronic conductivity is good, 
but ionic conductivity poor. 
 
Mix with YSZ to give ionic 
conductivity, but some Ti 
dissolves in YSZ. 
 
Not catalytic for H2 oxidation so 
needs catalyst (e.g. Ni) 
impregnation 
 
Good redox tolerant anode and 
anode support 



Page 59 

n-doped SrTiO3 anodes 

La4Sr8Ti11Mn0.5Ga0.5O37.5  

Ruiz-Morales et al., Nature (2006) Current collection problem 
(low electronic 
conductivity) 
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YSZ impregnated with Cu and CeO2 

H2 

C4H10 

CH4 

R.J. Gorte et al., Adv. Mater. 12 (2000) 1465 

700°C 
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Current research directions for anodes 

• Durability 
– Ni coarsening 

• Lower temperatures 
– High surface areas by impregnation 
– Composites with lower temperature electrolytes 

• S and C tolerance 
• Redox tolerance 

– Lower Ni content microstructures 
– Stiff YSZ frameworks 
– Oxide anodes 

• Mechanisms and modelling 
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Thank you for your 
attention! 

 
Questions on anodes? 
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