Imperial College London # SOFC Cathodes, Supports and Contact Layers Alan Atkinson Department of Materials Imperial College London SW7 2AZ, UK alan.atkinson@imperial.ac.uk ### Contents for cathodes - Requirements for application in SOFCs - LSM based cathodes - defects in TM perovskites - temperature limitations - Mixed conducting cathodes - Oxygen diffusion and exchange - Drive for lower operating temperatures - Contamination and durability issues - Cr poisoning - water vapour sensitivity - surface segregation Review: S. B. Adler, "Factors governing oxygen reduction in solid oxide fuel cell cathodes", Chemical Reviews, **104**, 4791-4844 (2004) ### Oxygen reduction reaction Oxygen vacancies are required for surface reaction as well as for bulk diffusion Electrons are required for ionisation ### Triple phase boundary electrodes - •Electrocatalyst has high electronic conductivity, but low ionic conductivity - Reaction site is "at" triple phase boundary - LSM cathodes typical example - Composites with good ionic conductor used to improve performance (e.g. LSM/YSZ cathodes) - •Capacitance is low (e.g. 10⁻⁵ F cm⁻²) - •Cathode reaction requires both electronic and (oxygen) ionic defects - •In oxides this means transition metal constituents and oxygen nonstoichiometry (vacancies or interstitials) Working overpotentials can change oxide stability or properties ## Theory for porous single phase cathode Adler, Lane, and Steele, J. Electrochem. Soc., 143 (1996) 3554 •Microstructure is very important (a, ε, τ) Only gives ASR close to open circuit conditions (when gas and solid are close to being in equilibrium). ### **Targets** ### **Cathode** $$R_{Chem} = \left(\frac{RT}{4F^2}\right) \sqrt{\frac{\tau}{(1-\varepsilon)ac_0^2 D^* k^*}}$$ $ASR = 0.15 \text{ ohm cm}^2$ For $\tau = 2$, $\varepsilon = 0.3$, $a = 10^7 \,\mathrm{m}^{-1}$, T = 1000K Then $D^*k^* > 10^{-14} \text{ cm}^3 \text{ s}^{-1}$ (Note: an ionic conductivity of 0.01 S/cm corresponds to $D^* = 2x10^{-8} \text{ cm}^2 \text{ s}^{-1}$) e.g. $D^* > 10^{-8} \text{ cm}^2 \text{ s}^{-1}$ and $k^* > 10^{-6} \text{ cm s}^{-1}$ For current collection need high electronic conductivity (e.g. 100s S/cm) 5 mm channels σ>1,000 S cm⁻¹ All require chemical and thermo-mechanical stability (CTE match) ## Defects in TM perovskites e.g. La_{1-x}Sr_xMnO₃ (LSM) Acceptor doping $2SrO \rightarrow 2Sr'_{La} + 2O_O^{\times} + V_O^{\bullet}$ Reduction $O_O^{\times} \rightarrow V_O^{\bullet \bullet} + 2e^- + \frac{1}{2}O_2(g)$ **Electronic** $null \rightarrow e' + h^{\bullet}$ Mn valency change Schottky $null \rightarrow V_{La}^{""} + V_{Mn}^{""} + 3V_{O}^{\bullet \bullet}$ LSM in this range ### Properties of LSM D too low for single phase cathode Need electrolyte (YSZ) to provide ionic conductivity and vacancies for oxygen reaction #### Review: S.P. Jiang, J. Mat. Sci. 43 (2008) 6799 ### LSM-based cathodes - Microstructure is very important (particle size, mixing, sintering temperature) - Compatible with YSZ (if A-site deficient) - Good CTE match to YSZ - Lowest operating T about 800C - "Conditioning" on initial polarization (initial improvement in performance) probably due to changes in surface composition ## Oxygen diffusion in TM perovskites ### Co-containing cathodes - React with zirconia electrolytes - Need an intermediate barrier layer (e.g. CGO) Tu et al., Solid State Ionics 117 (1999) 277–281 ## Defects in La_{1-x}Sr_xCoO_{3-δ} Sr increases conductivity and induces metallic behaviour A.N. Petrov et al., Solid State Ionics (1995) ## Oxygen diffusion in La_{0.6}Sr_{0.4}CoO₃ at p_{O2}=0.21 atm ⁽¹⁾ Inoue, T., Kamimae, J., Ueda, M., Eguchi, K. & Arai, H. Journal of Materials Chemistry 3, 751 - 754 (1993). ⁽²⁾ Sogaard, M., Hendriksen, P. V., Mogensen, M., Poulsen, F. W. & Skou, E. Solid State Ionics 177, 3285-3296 (2006). ⁽³⁾ Fullarton, I. C., Kilner, J. A., Steele, B. C. H. & Middleton, P. H. in 2nd International Symposium on Ionic and Mixed Conducting Ceramics (eds. Ramanarayanan, T. A., Worrell, W. L. & Tuller, H. L.) 9-26 (The Electrochemical Soviety, San Francisco, 1994). ## ALS model for MIEC porous electrode $$l_{\delta} = \sqrt{\frac{D^*}{k^*} \frac{\left(1 - \varepsilon\right)}{a\tau}}$$ Effective cathode thickness increases with D and decreases with k and is usually < 10 μm $$Z_{chem} = R_{chem} \sqrt{\frac{1}{1 + j\omega R_{chem} C_{chem}}}$$ "Gerischer impedance" $$t_{chem} = \frac{c_V}{c_O A} \frac{\left(1 - \varepsilon\right)}{a} \frac{1}{k^*}$$ $$C_{chem} = \frac{2F^2 \left(1 - \varepsilon\right)}{ART} c_V l_{\delta}$$ Large chemical capacitance controlled by deviation from stoichiometry, c_V (e.g.1F/cm²) A is a thermodynamic factor for defects and is close to unity Data for La_{0.6}Ca_{0.4}Co_{0.2}Fe_{0.8}O₃ on SDC at 700°C (Adler et al. J. Electrochem Soc., 1996) # Surface exchange in $La_{0.6}Sr_{0.4}CoO_3$ and $Sm_{0.6}Sr_{0.4}CoO_3$ at p_{O2} =0.21 atm ### D* in LSC at 600°C ^{*} Extrapolated from higher T ### k* at 600°C ### Low temperature composite cathodes 70% $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3$ 30% $Ce_{0.8}Gd_{0.2}O_2$ Composite Esquirol, Kilner and Brandon, Solid State Ionics, 2004 ## Conductivity of LSC/CGO composites | Material | CTE | | | | |----------------|-------|--|--|--| | | ppm/K | | | | | CGO | 12.5 | | | | | 20%LSC
/CGO | 13.7 | | | | | 30%LSC
/CGO | 14.8 | | | | | LSC | 20.4 | | | | ### Low temperature composite cathodes $50\% \text{ Gd}_{0.8}\text{Sr}_{0.2}\text{CoO}_3$ $50\% \text{ Ce}_{0.9}\text{Gd}_{0.1}\text{O}_2$ Composite Huang et al. J. Power Sources (2008) ## Oxygen surface exchange on thin film cathode materials F.S. Baumann et al., J Electrochem. Soc. (2007) Thickness is much less than D*/k*, so rate is controlled by surface exchange $$k = \frac{RT}{4F^2R_sc_{\rm O}}$$ - BSCF cathodes have excellent initial performance but degrade rapidly in air - •Surface carbonation forming BaCO₃ is a major problem ## Cr poisoning Cr released from steel components as $CrO(OH)_2$ vapour At cathode this is reduced to Cr_2O_3 : $2CrO(OH)_2+2e^- \rightarrow Cr_2O_3+2H_2O+O^{2-}$ Reacts with Sr in cathode to give $SrCrO_4$ Need coating on steel to prevent Cr evaporation I. Vinke, SOFC IX, 2007 ## "K2NiF4" -structured oxides with oxygen excess S.J. Skinner and J.A. Kilner, Solid State Ionics 135 (2000)709. - •With no Sr or Ba hope to avoid some of the degradation issues - •Because defects are oxygen interstitials performance under polarisation is not enhanced (as it is with oxygen deficient oxides) ### "K₂NiF₄" -structured oxides with oxygen excess (2) ### Performance of LNO cathodes F. Chauveau et al, ECS Transactions, 25, 2557 (2009) ### Final comments on cathodes - LSM needs ionic conductor (YSZ) to give composite with TPBs and percolating ionic pathways. - LSM composites good for higher T (e.g. > 800 C) - Transition metal perovskites good mixed conductors and some can be used as single phase cathodes - E.g. LSCF (with CGO barrier layer) at T > 700 C. - Below 700 C needs composite to boost ionic conductivity - Composites also allow better CTE matching - In general, the higher the intrinsic activity the lower the stability (chemical and mechanical) - High Ba, Sr and/or Co contents bring problems - Would like better tolerance of Cr, H₂O and CO₂ ## Thank you for your attention! Questions on cathodes? ## Supports and contact/protective layers ### Cell supports ### Requirements - Mechanical support for cell structure - Sufficient gas transport to electrode (conflicts with previous) - Sufficient electronic conductivity - CTE match to cell - Stable to chemical changes in environment - Easy and cheap to manufacture ### Options - Anode - Cathode - Electrolyte - Interconnect (metal) - Inert material ### Anode support (Ni-based) #### Advantages Popular (e.g. Juelich, Versa, Topsoe) Good performance Internal reforming #### Disadvantages Expensive Ni content (but better than cathode support) Poor redox tolerance C-deposition problems ### Anode support (ceramic) ### Advantages No redox or C-deposition problems ### Disadvantages - Poor electronic conduction (difficult current collection) - Unreliable impregnation of catalyst - Still at research stage ## Electrolyte support (e.g. Hexis) ### Advantages - Flexible choice for anode - Some redox tolerance even with Ni-based anodes ### Disadvantages - Limited to high operating T (e.g.900C) - Fragile - Expensive interconnector (e.g. CrFeY) ### Metallic support (e.g. Ceres Power, DLR) ### Advantages - Mechanically robust - Cheap material - Good for lower temperatures - Easy to seal - Disadvantages - Tricky processing ### Inert supported (e.g. LGFCS) ### Advantages - Cheap material - Some redox tolerance ### Disadvantages In-plane design has difficult current collection ### Need for contact and protective coatings - Used with metallic interconnects/bipolar plates - To improve (lower) contact resistance between metal and cathode - Target contribution to ASR < 20 m Ω cm² - Corresponds to approx. 1% reduction in power density - To reduce contamination of cathode by Cr-containing vapour evaporating from metal - Target for cathode ASR to increase by < 1%/kh - Applied as a coating(s) on the interconnect on cathode side Juelich cell cross-section ### Corrosion scales on interconnect alloys | | Fe | Cr | Mn | Ti | Si | ΑI | Nb | Andere | |--------------|------|-------|----------|------|---------|------|---------|---------------------------------------| | F18TNb | 78 | 19,4 | 0,12-0,5 | 0,12 | 0,46 | 0,02 | 0,17 | Mo 1,7 | | ITM | 70 | 26 | | | 0,02 | 0,02 | | Y 0,06 | | Crofer 22APU | Rest | 20-24 | 0,3-0,8 | 0,2 | 0,5 | 0,5 | | Cu 0,5 | | Crofer 22 H | Rest | 20-24 | 0,3-0,8 | 0,2 | 0,1-0,6 | 0,1 | 0,2-1,0 | W 1,0-3; La 0,04-0,2; Cu 0,5; S 0,006 | After 1000hrs exposure in air at 800°C all interconnects form a <u>Cr</u> and/or (Cr,Mn) oxide layer M. Zahid Often there are 2 layers: inner Cr₂O₃ and outer (Mn,Cr)₃O₄ spinel Evaporation of Cr species poisons cathode ### Protective coatings Application of Mn-Co-O spinels as protective layer Figure 2. Interfacial ASR between a LSF cathode and a coated Crofer22 APU interconnect as a function of time at 800°C in air, in comparison with that between a LSF cathode and a bare Crofer22 APU interconnect under the same test conditions. Z. G. Yang, G. G. Xia, J. W. Stevenson, Electrochem. Solid State Lett. 8 (2005) A168-A170 ## Electroplated or PVD Co coating on interconnect ### Coatings improve performance Time, h ## Final comments on coatings - Protective and contact coatings need to be optimised for particular interconnect alloys and cathodes - Protective coatings - Ideally should be dense - Should be able to absorb Cr in solid solution. - Can reduce alloy corrosion rates - Should not react to produce insulating phases - Transition metal spinels currently favoured for stainless steel interconnects - If not used, then need Cr-tolerant cathodes - Contact coatings - Ideally should be porous (compliant) - Transition metal perovskites currently favoured ## Thank you for your attention! Questions on supports and coatings?