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Fuel cell generates current at <1 V

For 1 kW it would have to generate >1000 Ampers

For 100 kW it would have to generate >100000 Ampers

At 1 Amp/cm2 it would need >10 m2

P = V x I

Fuel cells are connected/stacked in series – stack

up to 200 cells in stack

For 100 kW it would need to generate >500 A at <200 V

Each cell in stack would need active area of >500 cm2



In order to get higher voltage fuel cells are stacked in a stack
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oxidant in

hydrogen out

coolant in

end plate
bus plate

bi-polar collector plates

In order to get higher voltage fuel cells are stacked in a stack

membrane

anode

cathode

oxidant + water out

hydrogen in

coolant out

tie rod

Stacks with more than 100 cells have been built

Individual stacks may be connected (in series or in parallel)

cathode



energy partners

P R O T O N

300 cm2

25-110 cells

4.5-20 kW

0.6 W/cm2

@0.6 V/cell

pressurized up to 3 bar 

liquid cooled

65 cm2

60 cells

1 kW

0.25 W/cm2

@0.7 V/cell

ambient pressure

air cooled



Major stack componentsMajor stack components

Membrane

Catalyst

Catalyst support

Catalyst layer

Gas diffusion layer

Gaskets/frames

MEA

end plate

bus plate

bi-polar collector plates

Gaskets/frames

Flow field

Separator/connector

Bus plates/terminals

End plates

Clamping mechanism

Fluid connections

Manifolds

Cooling plates/arrangements

Humidification section (optional)

Bi-polar

plate

tie rod



Stack design goals

Performance
Power density

Stability

Durability

Size and weight

Manufacturability

>1 W/cm2  peak

0.6-0.7 W/cm2 normal operation (nominal)

0.3-0.4 W/cm2 high efficiency operation

< 1 kg/kW

< 1 l/kWManufacturability

Constraints/inputs

Application requirements
Load variability

Environmental conditions

Operating conditions
Pressure, temperature, flow rates, humidity
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W = stack power output

Vst = stack voltage

I = stack current

Vcell = cell voltage

ncell = number of cells

i = current density

Acell = cell active area

w = power density

Stack sizing

I = i.Acell

Vcell = f(i)

η=Vcell/1.482

cell

w = power density

η= stack efficiency

Stack volume

Stack weight
w = i V = W/(ncell Acell )



example

Given:

Power output: 20 kW

Vcell = 0.6 V

Find:

Active area

Number of cells

W 20 20 20 20 20 20

Vcell 0,6 0,6 0,6 0,6 0,6 0,6

i 1 1 1 1 1 1

A 100 150 200 300 400 500

I 100 150 200 300 400 500

w 0,6 0,6 0,6 0,6 0,6 0,6

Ancell 33333,33 33333,33 33333,33 33333,33 33333,33 33333,33

Ncell 333,33 222,22 166,67 111,11 83,33 66,67

Vstack 200 133,3333 100 66,66667 50 40
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A    C        A    C         A   C         A   C-– +

Bipolar Stack Configuration

electron pathway
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Monopolar Stack Configurations

zig-zag configuration

flip-flop configuration
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Stack design/engineering issuesStack design/engineering issues

Uniform distribution of reactants to each cell

Uniform distribution of reactants inside each cell

Uniform or desired temperature distribution in each cell

Minimal resistive losses

• good electrical contacts

• selection of materials• selection of materials

Account for thermal expansion

No crossover or overboard leaks

Minimum pressure drop (reactant gases and coolant)

No water accumulation pockets

Design for manufacture/design for assembly 
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Design for manufacture/design for assembly 



Stack design/engineering issuesStack design/engineering issues

Uniform distribution of reactants to each cell

a) “U”-shape b) “Z”-shape
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c) Combined parallel-serial
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Pressure dropPressure drop

feeder

∆∆∆∆Pfeeder << ∆∆∆∆Pcell
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Pressure dropPressure drop
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The flow in any network must satisfy 

the basic relations of continuity and 

energy conservation:

1) The flow into any junction must 

equal the flow out of it

2) The flow in each segment has a 

pressure drop that is a function of 

Piping Network Problem
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pressure drop that is a function of 

the flow rate through that segment

3) The algebraic sum of the pressure 

drops around any closed loop must 

be zero
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1) The flow into any junction must equal the flow out of it
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For a non-operating stack, i.e., 

no species consumption nor 

generation, the flow at the stack 

outlet is equal to the flow at inlet:

for “U” configuration 

Qout(1) = Qin(1)

for “Z” configuration

Qout(N) = Qin(1) 



2) The flow in each segment has a pressure drop that is a function of the flow

rate through that segment
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3) The algebraic sum of the pressure drops around any closed loop must be zero

For i = 1 to (N – 1)
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by iteration a loop at a time



Flow Distribution through Individual Cells
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Example of cell voltages in a 40Example of cell voltages in a 40--cell stackcell stack
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280mA/cm̂ 2 480mA/cm̂ 2 680mA/cm̂ 2

Date: 8-29-98                           H2/air stoic: 1.5/2.5

Stack type: NG2000               Temp. (deg. C): 60

Active area (cm̂ 2): 292         H2/air humid (deg. C): 60

# of cells: 110                           Cells/pack: 2

Pressure (kPa): 170

Example of cell voltages in a 110Example of cell voltages in a 110--cell stackcell stack
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Source:Fuel Cell Power for Transportation, SAE SP-1505, pp. 63-69, 2000
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280mA/cm̂ 2 480mA/cm̂ 2 680mA/cm 2̂

Date: 5-19-99                           H2/air stoic: 1.6-2.8/3.5-10

Stack type: NG2000               Temp. (deg. C): 60

Active area (cm̂ 2): 292         H2/air humid (deg. C): 60

# of cells: 110                           Cells/pack: 4

Pressure (kPa): 170

Example of cell voltages in a 110Example of cell voltages in a 110--cell stackcell stack
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Source:Fuel Cell Power for Transportation, SAE SP-1505, pp. 63-69, 2000



Stack design/engineering issuesStack design/engineering issues

Uniform distribution of reactants to each cell

Uniform distribution of reactants inside each cell

Flow field needed to ensure uniform reactant distribution 
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Flow field design variablesFlow field design variables

Shape

Orientation (position of inlet and outlet manifolds)

Orientation (horizontal or vertical)

Configuration of channels
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Configuration of channels

Dimensions of channels and spacing

Anode vs. cathode orientation

Geometry of channels



square rectangular
circular

Flow field shapeFlow field shape
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hexagonal irregular



anode facing up cathode facing up

horizontal stack-up vertical stack-up

Flow field orientationFlow field orientation
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top to bottom bottom to top side to side

Flow field orientationFlow field orientation
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same side inlets and outlets

radial (outwards) radial (inwards)



Flow field configurationsFlow field configurations

straight criss-cross
single channel

serpentine

multi-channel

serpentine
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subsequent
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spiral



biomimeticinterdigitated fractal

Flow field configurations (cont.)Flow field configurations (cont.)
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screen/mesh porous



unveils flow field design

FCX Clarity



Improved flow field design

reactant gases distribution coolant distribution

FCX Clarity



Improved flow field design – better performance

FCX Clarity



Improved water drainage

FCX Clarity



Velocity Vector Plot i = 1.0 A/cm2 (Qair = 1813 sccm)

CFD can be a powerful tool for flow field designCFD can be a powerful tool for flow field design



Velocity distribution in flow field channels

inletFlow field “A” inletFlow field “B”
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outlet outlet



Velocity distribution in flow field channels

inletFlow field “A” inletFlow field “B”
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outlet outlet



Oxygen molar fraction
conventional flow field vs. interdigitated flow field

0

500

1000

Y
(X

1
0

-3m
m

)

1

0

100

200

300

0.1680

0.1428

0.1176

0.0924

0.0672

0.0420

Oxygen mole fraction

-1

-0.5

0

0.5

1

Z (mm)

400

500

600

700

800

X (x10
- 2 cm)

0

0.5

1

Y
(m

m
)

0

0.5

1

1.5

2

Z (mm)

0

1

2

3

4

X (cm)

0.1680

0.1260

0.0840

0.0420

In

H. Liu,  T. Zhou and L. You, NSF Workshop on Engineering Fundamentals of Low-

Temperature PEM Fuel Cells, Arlington, VA, November 14-15, 2001



Channel shapeChannel shape

rectangular

ovalrounded corners

triangletrapezoid

corrugated
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ovalrounded corners

• Shape dictated not only by design, but also by 

the manufacturing process (machining, molding, stamping, R)

corrugated



Effect of Channel Shape on Water FormEffect of Channel Shape on Water Form
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Issues:

Hydrophobicity/hydrophilicity 

Velocities required for water removal

Droplet coalescing

Droplet movement in bends and turns

hydrophobic

hydrophobic

hydrophobic

hydrophilic

Interaction between flow field and GDL
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hydrophilic

hydrophilic

hydrophobic
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k = l/(l+c) k = (l-o)/(l+c) k = (l-c)/(l+c)

Parallel

Anode vs. cathode orientationAnode vs. cathode orientation
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k = l/(l+c) k = (l-o)/(l+c) k = (l-c)/(l+c)

Cross

k = [l/(l+c)]2

Effect on electrical resistance

Anode vs. cathode flow directionAnode vs. cathode flow direction

CoCo--flowflow

CounterCounter--flowflow

Cross flowCross flow



Current density (A/cm2) distributions

Co-flow Counter flow

Stationary operating 

conditions: 

H2 80 ◦C

Air 70 ◦C dew point 

at 40%

1.2/2.0 Stoich with 

101 kPa pressure  70 

◦C cell temperature

S. Shimpalee, J.W. Van Zee, Numerical studies on rib & channel dimension of flow-field on PEMFC 

performance, Int. J. of Hydrogen Energy, Volume 32, Issue 7, 2007, Pages 842-856

Automotive operating 

conditions: 

H2 75% RH at 80 ◦C/

Air: DRY dew point at 

100%

1.3/2.0 Stoich 

274 kPa pressure 

80 ◦C cell temperature



channel = land channel > land channel < land

Channel dimensions and spacingChannel dimensions and spacing
F
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• Dimensions dictated by flow rates and desired velocities



Current density (A/cm2) distributions at Iavg = 1.2 A/cm2; stationary conditions

Current density (A/cm2) distributions at Iavg = 0.8 A/cm2; automotive conditions



Temperature (K) distributions at the cross flow plan (x–y plane) 

located in the middle of flow-field 

Base case

Wide channels

Narrow channels

S. Shimpalee, J.W. Van Zee, Numerical studies on rib & channel dimension of flow-field on PEMFC 

performance, Int. J. of Hydrogen Energy, Volume 32, Issue 7, 2007, Pages 842-856



Conclusions: The effect of channel/rib width on PEMFC performance

• The performance is slightly higher for the narrower channel with 

wider rib spacing for stationary condition.

• Larger rib area gives better heat transfer from MEA toward collector.

• The global uniformity of distributions is similar for all channel/rib 

width.

• Wider channel with narrower rib shows more local nonuniformity

distributions between channel and rib.

• Pressure drop increases when the channel area is reduced.



Effect on local current densityEffect on local current density
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The motivation of this study was to understand 

the implication of L:C ratio and channel–DM 

interface on the liquid water content stored in 

the diffusion media and flow channels during 

steady-state operation



Neutron imaging at the Penn State Breazeale 

Nuclear Reactor Fuel Cell Imaging Laboratory was 

used to quantify liquid water content and 

distribution in 50 cm2 fuel cells with L:C ratios 

from 1:3 to 2:1.















Results indicate: 
(1) for L:C ratios of one, the liquid water tends to preferentially 

accumulate under landings rather than in, or under the channels, 

(2) water storage is not only a function of diffusion media but also 

dependent on the flow-field geometry and the number of interfaces 

for a hydrophilic channel wall, 

(3) it is possible to obtain similar cell performance at low to 

moderate current density with vastly different amounts of stored 

water by tailoring the flow-field geometry, water by tailoring the flow-field geometry, 

(4) as the L:C ratio is reduced, the liquid stored in the cell 

decreases, with an optimal condition for L:C ratios smaller than 2:3, 

(5) the number of channel–DM interface for the same L:C ratio has 

an important influence on water accumulation. Corners are 

preferred water storage sites and a reduced number of channel–DM 

interface corresponds to less corners and turns for a serpentine 

design which results in low water mass in the cell, 

(6) at dry operation, a high L:C ratio can be helpful, while at high 

humidity ratio, a low L:C is preferred.
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Velocity in channel
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Re f = constantFor laminar flow

Re f = 64

∆P = f ∑ ρ+ρ
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Pressure drop

Cathode side 

pressure drop 

measured

Stack at room 

temperature

Current drawn 

U
n

if
o

rm
 d

is
tr

ib
u

ti
o

n

Current drawn 

proportional to flow rate 

1.75 LPM every 10 A

Pressure drop as a function of flow rate and stack inlet 

conditions for both operating and non-operating stack



Stack design/engineering issuesStack design/engineering issues

Uniform distribution of reactants to each cell

Uniform distribution of reactants inside each cell

Uniform temperature distribution in each cell
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Cooling is required to ensure uniform temperature distribution 
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Fuel cell cooling schemesFuel cell cooling schemes

cooling with coolant air cooling edge cooling evaporative

cooling
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Heat Transfer Paths in Fuel CellHeat Transfer Paths in Fuel Cell

Radiation/convection to the surrounding

Conduction through solid

Convection with fluids

Electrochemical reactions

Enthropic

Irreversible losses

Ohmic

Ionic

Electronic

Interface contacts

Condensation/evaporation

Sources of Heat in Fuel CellSources of Heat in Fuel Cell
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With coolant

With unused reactant gas

(both sensible and latent)

Conduction/convection

through porous media
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Effect of cooling cell distribution
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Gas diffuser MEA 

Y 

Z 

X 

CFD simulation of temperature distribution

in a portion of a flow field
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Gas diffuser MEA 
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Edge Cooling
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Limitation of Edge Cooling: Conductivity of MaterialLimitation of Edge Cooling: Conductivity of Material
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Effect on electrical resistanceEffect on electrical resistance
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Resistance is a function of clamping forceResistance is a function of clamping force
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Contact Pressure Investigation
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Cell compressionCell compression

Clamping Force = 

Force required to compress the GDL

+ Force required to compress the gasket

+ Internal force(s)Tie-rod

nut

GDL

gasket

Issues:

Contact resistance

Sealing

Pressure distribution

End plate bowing

Internal pressure

Thermal expansionC
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Cell/stack compressionCell/stack compression

Non-uniform Uniform

Hydraulic or pneumatic piston
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Avoiding loss of stack compression

Bellville washers on tie-rods

Endplate

Tie Rods

Spring Washers

Positive Terminal

Negat ive Terminal

Reversible Cells

Fluid Manifold

A Novel Approach: springs (coil or polyurethane) – central compression
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Stack design/engineering issuesStack design/engineering issues

Uniform distribution of reactants to each cell

Uniform distribution of reactants inside each cell

Uniform temperature distribution in each cell

Minimal resistive losses

• good electrical contacts

• selection of materials• selection of materials

Account for thermal expansion

No crossover or overboard leaks

Minimum pressure drop (reactant gases and coolant)

No water accumulation pockets

Design for manufacture/design for assembly 
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ConclusionsConclusions

A fuel cell stack is a simple, yet complex device

Uniformity of local conditions is essential for good design

Understanding of operating conditions is important

Information may be gathered through modeling/numerical Information may be gathered through modeling/numerical 

simulations and experimentally

Selection of key parameters and conditions must be made 

from the system perspective

Good stack design with commercially available MEAs

should yield close to 1 W/cm2



300 W – 3 kW

PEM Fuel Cell Stacks

for back-up power



PEM Fuel Cell Stacks

for residential 

cogeneration



PEM Fuel Cell Stacks

for motive power
--------------------------------------

Material handling:

forklift trucks



PEM Fuel Cell Stacks

for motive power
--------------------------------------

Bus and Heavy duty
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