

Cell and Stack Design

Frano Barbir

Professor, FESB, University of Split, Croatia

FESB = Faculty (School) of electrical engineering, mechanical engineering and naval architecture

Joint European Summer School for Fuel Cell and Hydrogen Technology

Fuel cell generates current at <1 V

 $P = V \times I$

• For 1 kW it would have to generate >1000 Ampers

• For 100 kW it would have to generate >100000 Ampers

• At 1 Amp/cm² it would need >10 m²

Fuel cells are connected/stacked in series – stack

• up to 200 cells in stack

- For 100 kW it would need to generate >500 A at <200 V
- Each cell in stack would need active area of >500 cm²

In order to get higher voltage fuel cells are stacked in a stack

In order to get higher voltage fuel cells are stacked in a stack

Stacks with more than 100 cells have been built

Individual stacks may be connected (in series or in parallel)

PROTON

300 cm² 25-110 cells 4.5-20 kW 0.6 W/cm² @0.6 V/cell pressurized up to 3 bar liquid cooled

65 cm² 60 cells 1 kW 0.25 W/cm² @0.7 V/cell ambient pressure air cooled

Major stack components

Membrane Catalyst **Catalyst support Catalyst layer Gas diffusion layer** Gaskets/frames Flow field Separator/connector **Bus plates/terminals End plates** Clamping mechanism Fluid connections Manifolds **Cooling plates/arrangements** Humidification section (optional)

Stack design goals

Performance

 Power density
 Stability
 Durability

 Size and weight
 Manufacturability

>1 W/cm² peak 0.6-0.7 W/cm² normal operation (nominal) 0.3-0.4 W/cm² high efficiency operation

 < 1 kg/kW</td>

 < 1 l/kW</td>

BALLARD

550

Constraints/inputs

- Application requirements Load variability Environmental conditions
- Operating conditions

Pressure, temperature, flow rates, humidity

Stack sizing

$$W = V_{st} I$$

$$V_{st} = \sum_{i=1}^{N_{cell}} V_i = \overline{V}_{cell} \cdot n_{cell}$$

$$I = i A_{cell}$$

$$V_{cell} = f(i)$$

w = i V = W/($n_{cell} A_{cell}$)

η=V_{cell}/1.482

W = stack power output V_{st} = stack voltage I = stack current V_{cell} = cell voltage n_{cell} = number of cells i = current density A_{cell} = cell active area w = power density η = stack efficiency

Stack volume Stack weight

example

Given:	W	20	20	20	20	20	20
Power output: 20 kW	Vcell	0,6	0,6	0,6	0,6	0,6	0,6
Vcell = 0.6 V	i	1	1	1	1	1	1
	А	100	150	200	300	400	500
Find: Active area Number of cells	I	100	150	200	300	400	500
	W	0,6	0,6	0,6	0,6	0,6	0,6
	Ancell	33333,33	33333,33	33333,33	33333,33	33333,33	33333,33
	Ncell	333,33	222,22	166,67	111,11	83,33	66,67
	Vstack	200	133,3333	100	66,66667	50	40

Stack sizing

Typical polarization curves

Stack size vs. efficiency

Stack efficiency vs. nominal (selected) cell voltage

Bipolar Stack Configuration

Monopolar Stack Configurations

flip-flop configuration

- Output is the second second
- Uniform distribution of reactants inside each cell
- Uniform or desired temperature distribution in each cell
- Minimal resistive losses
 - good electrical contacts
 - selection of materials
- Account for thermal expansion
- No crossover or overboard leaks
- Minimum pressure drop (reactant gases and coolant)
- No water accumulation pockets
- Design for manufacture/design for assembly

• Uniform distribution of reactants to each cell

- Output in the second second
- Uniform or desired temperature distribution in each cell
- Minimal resistive losses
 - good electrical contacts
 - selection of materials
- Account for thermal expansion
- No crossover or overboard leaks
- Minimum pressure drop (reactant gases and coolant)
- No water accumulation pockets
- Design for manufacture/design for assembly

• Uniform distribution of reactants to each cell

Pressure drop

$$\Delta P_{\text{feeder}} << \Delta P_{\text{cell}}$$

 $\Delta \mathbf{P} = \mathbf{f} \rho \frac{\mathbf{L}}{\mathbf{D}} \frac{\mathbf{v}^2}{2}$ For non-compressible flow also for compressible as long as $\Delta \mathbf{P} < 0.1\mathbf{P}$

For laminar flow for Re < 2000 $\mathbf{f} = \frac{\mathbf{64}}{Re}$ $Re = \frac{\mathbf{Dv}}{v}$ $\Delta \mathbf{P} = \mathbf{32} \mu \frac{\mathbf{L}}{\mathbf{D}^2} \mathbf{v}$

For non-circular conduits $D = 4R_h$ $R_h = \frac{A}{P_m}$

$$\mathbf{v} = \frac{\dot{\mathbf{m}}}{\rho \mathbf{A}} \qquad \Delta \mathbf{P} = \mathbf{2} \nabla \frac{\mathbf{L} \mathbf{P}_{\mathbf{m}}^2}{\mathbf{A}^3} \dot{\mathbf{m}}$$

For compressible flow
$$P_1^2 - P_2^2 = \dot{m}^2 \frac{RT}{A^2} \left(f \frac{L}{D} + 2 \ln \frac{P_1}{P_2} \right)$$

Piping Network Problem

The flow in any network must satisfy the basic relations of continuity and energy conservation:

1) The flow into any junction must equal the flow out of it

2) The flow in each segment has a pressure drop that is a function of the flow rate through that segment

3) The algebraic sum of the pressure drops around any closed loop must be zero

1) The flow into any junction must equal the flow out of it in inlet manifold:

Qin(i) = Qcell(i) + Qin(i+1)

in outlet manifold, "U" configuration Qout(i) = Qcell(i) + Qout(i+1)

in outlet manifold, "Z" configuration Qout(i) = Qcell(i) + Qout(i-1)

Qin(1) = Qstack

For a non-operating stack, i.e., no species consumption nor generation, the flow at the stack outlet is equal to the flow at inlet:

> for "U" configuration Qout(1) = Qin(1) for "Z" configuration Qout(N) = Qin(1)

2) The flow in each segment has a pressure drop that is a function of the flow rate through that segment

Bernoulli equation (without gravity forces):

$$\Delta P(i) = -\rho \frac{[u(i)]^2 - [u(i-1)]^2}{2} + f \rho \frac{L}{D_H} \frac{[u(i)]^2}{2} + K_f \rho \frac{[u(i-1)]^2}{2}$$
For laminar flow: $f = \frac{64}{Re}$
For turbulent flow: $f = \frac{1}{\left(1.14 - 2\log\frac{\epsilon}{D}\right)^2}$

3) The algebraic sum of the pressure drops around any closed loop must be zero

For i = 1 to (N - 1)

in "U" configuration

 $\Delta Pin(i+1) + \Delta Pcell(i+1) + \Delta Pout(i+1) - \Delta Pcell(i) = 0$

in "Z" configuration

 $\Delta Pin(i+1) + \Delta Pcell(i+1) - \Delta Pout(i) - \Delta Pcell(i) = 0$

The problem must be solved by iteration a loop at a time

Flow Distribution through Individual Cells

Example of cell voltages in a 40-cell stack

Example of cell voltages in a 110-cell stack

Source: *Fuel Cell Power for Transportation*, SAE SP-1505, pp. 63-69, 2000

Example of cell voltages in a 110-cell stack

In the vehicle

Source: Fuel Cell Power for Transportation, SAE SP-1505, pp. 63-69, 2000

Output is the second second

• Uniform distribution of reactants inside each cell

Flow field needed to ensure uniform reactant distribution

Flow field design variables

- Shape
- Orientation (position of inlet and outlet manifolds)
- Orientation (horizontal or vertical)
- Configuration of channels
- Dimensions of channels and spacing
- Anode vs. cathode orientation
- Geometry of channels

Flow field shape

rectangular

circular

hexagonal

irregular

Flow field orientation horizontal stack-up anode facing up cathode facing up С а С а

vertical stack-up

Flow field orientation

Flow field

Flow field configurations

multi-channel serpentine

subsequent serpentine

mirror serpentine

serpentine

Flow field
Flow field configurations (cont.)

Flow field

biomimetic

screen/mesh

fractal

porous

unveils flow field design

Improved flow field design

reactant gases distribution

The wave shape and increased flow-channel length result in improved hydrogen and air diffusion. The coolant inlets and outlets are positioned horizontally, allowing the connecting ducts to be expanded for improved distribution. These innovations result in an approximate 10% improvement in generating performance.

coolant distribution

Improved coolant distribution

Straight flow channels

Straight flow channels

Improved coolant distribution

Straight flow channels

<t

Horizontal coolant flow improves distribution, resulting in even cooling over the entire surface. The number of cooling layers can be decreased to 50%, reducing stack length by 20% and stack weight by 30%.

Improved flow field design – better performance

Improved water drainage

V Flow cell structure Depth of flow channel Water drainage capacity = Pressure differential + Gravity Pressure Adhesion Adhesion force Flow channel depth = Water drainage capacity Improved water drainage 1999 How channel depth (mm) -17% 2003 2001 • Pressure 2006 Water drainage capacity (N)

CFD can be a powerful tool for flow field design

Velocity distribution in flow field channels

Flow field

Velocity distribution in flow field channels

inlet

Flow field

Oxygen molar fraction conventional flow field vs. interdigitated flow field

H. Liu, T. Zhou and L. You, NSF Workshop on Engineering Fundamentals of Low-Temperature PEM Fuel Cells, Arlington, VA, November 14-15, 2001

Channel shape

 Shape dictated not only by design, but also by the manufacturing process (machining, molding, stamping, ...)

Effect of Channel Shape on Water Form

droplets

Interaction between flow field and GDL

Issues:

Flow field

- Hydrophobicity/hydrophilicity
- Velocities required for water removal
- Droplet coalescing
- Droplet movement in bends and turns

GM

MichiganTech

Channel Characterization

Single Channel Experiments

- effect of wettability on 2-phase flow transition presented.
- high speed microscopy shows extreme pressure spikes and density waves in channels at typical reactant purge velocities
- determined critical volume at which static liquid film or drop will spontaneously plug a channel:
 - > function of channel and base (GDL) contact angles
 - solution generated via Surface Evolver
- use to predict location of channel plugging
- assist with developing channel purge strategies

Understanding critical volume for liquid plug formation can assist with flow field purge strategy.

S. Kandlikar et al., (2009)

Anode vs. cathode orientation

Parallel

Flow field

S. Shimpalee, J.W. Van Zee, Numerical studies on rib & channel dimension of flow-field on PEMFC performance, *Int. J. of Hydrogen Energy*, *Volume 32, Issue 7, 2007, Pages 842-856*

Channel dimensions and spacing

Dimensions dictated by flow rates and desired velocities

Flow field

Current density (A/cm²) distributions at $I_{avg} = 0.8 \text{ A/cm}^2$; automotive conditions

Temperature (K) distributions at the cross flow plan (x-y plane) located in the middle of flow-field

S. Shimpalee, J.W. Van Zee, Numerical studies on rib & channel dimension of flow-field on PEMFC performance, *Int. J. of Hydrogen Energy*, *Volume 32, Issue 7*, 2007, *Pages 842-856*

Available online at www.sciencedirect.com

International Journal of Hydrogen Energy 32 (2007) 842-856

www.elsevier.com/locate/ijhydene

Numerical studies on rib & channel dimension of flow-field on PEMFC performance

S. Shimpalee*, J.W. Van Zee

NSF I/UCRC for Fuel Cells, Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA

Conclusions: The effect of channel/rib width on PEMFC performance

- The performance is slightly higher for the narrower channel with wider rib spacing for stationary condition.
- Larger rib area gives better heat transfer from MEA toward collector.
- The global uniformity of distributions is similar for all channel/rib width.
- Wider channel with narrower rib shows more local nonuniformity distributions between channel and rib.
- Pressure drop increases when the channel area is reduced.

Effect on local current density

Source: University of Miami presentation at Annual National Laboratory R&D Meeting DOE Fuel Cells for Transportation Program, Oak Ridge, June 6 - 8, 2001

Fig. 6. Distributions of (a) oxygen mole fraction with 0% compression ratio, (b) liquid water saturation level with 0% compression ratio, (c) oxygen mole fraction with 50% compression ratio and (d) liquid water saturation level with 50% compression ratio (cell voltage: 0.3V; contact angle of the GDL: 89; contact resistance: neglected). Zhou, Wu reference

Journal of Power Sources 180 (2008) 773-783

Contents lists available at ScienceDirect

Journal of Power Sources

journal homepage: www.elsevier.com/locate/jpowsour

Passive control of liquid water storage and distribution in a PEFC through flow-field design

A. Turhan, K. Heller, J.S. Brenizer, M.M. Mench*

Fuel Cell Dynamics and Diagnostics Laboratory, Radiation Science and Engineering Center, Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802, United States

> The motivation of this study was to understand the implication of L:C ratio and channel–DM interface on the liquid water content stored in the diffusion media and flow channels during steady-state operation

Neutron imaging at the Penn State Breazeale Nuclear Reactor Fuel Cell Imaging Laboratory was used to quantify liquid water content and distribution in 50 cm² fuel cells with L:C ratios from 1:3 to 2:1.

Table 1

Experimental test matrix

Cell configuration landing-channel	Current density (A cm ⁻²)	Inlet relative humidity (%)
0.5 × 0.5	$0 \rightarrow 1.5$	50/100
0.5 × 1.5	$0 \rightarrow 1.5$	50/100
1.0×0.75	$0 \rightarrow 1.5$	50/100
1.0 × 1.0	$0 \rightarrow 1.5$	50/100
1.0 × 1.5	$0 \rightarrow 1.5$	50/100
2.0 × 1.0	$0 \rightarrow 1.5$	50/100
2.0×2.0	$0 \rightarrow 1.5$	50/100

All tests were performed at 80 °C, 150 kPa, anode/cathode stoichiometry of 2/2.

L/C: 1.0x1.5 Cell

L/C: 1.0x0.75 Cell

						Current density (A cm ⁻²)	Cell co	nfiguratior	1			
L:C 1.0 × 1.5							L;C 1,0					
50 RH	50 RH 100 RH		Cathode velocity (m s ⁻¹)	Anode velocity (m s ⁻¹)		50 RH		100 RH		Cathode velocity (m s ⁻¹)	Anode velocity (m s ⁻¹)	
CH (mg)	L (mg)	CH (mg)	L (mg)				CH (mg)	L (mg)	CH (mg)	L (mg)		
79 81 79 78 91 71 75	73 74 73 73 85 67 70	210 240 218 188 158 111 101	151 174 161 169 152 122 107	1,21 2,41 3,62 4,83 6,03 7,24 8,44	0.93 1.85 2.78 3.70 4.63 5.56 6.48	0.2 0.4 0.6 0.8 1.0 1.2 1.4	85 86 94 89 98 92 77	126 127 140 133 145 136 115	234 270 412 322 247 205 180	281 301 403 354 306 284 257	1.67 3.34 5.01 6.68 8.35 10.02 11.69	1,28 2,56 3,85 5,13 6,41 7,69 8,98
67	63	104	110	9,05	6,95	1,5	72	109	100	201	12,53	9,62

L:C 0.5x1.5 cell

L:C 0.5x0.5 cell

						Current density (A cm ⁻²)	Cell co	nfiguration	n			
L;C 0.5 × 1.5						L;C 0,5	:C 0.5 × 0.5					
50 RH	50 RH 100 RH		Cathode velocity (m s ⁻¹)	Anode velocity (m s ⁻¹)		50 RH		100 RH		Cathode velocity (m s ⁻¹)	Anode velocity (m s ⁻¹)	
CH (mg)	L (mg)	CH (mg)	L (mg)				CH (mg)	L (mg)	CH (mg)	L (mg)		
172 81 69 71 60 72 85	75 43 38 38 32 39 44	254 323 253 193 143 154 124	99 119 109 88 68 70 60	0.90 1.81 2.71 3.62 4.52 5.43 6.33	0.69 1.39 2.08 2.78 3.47 4.17 4.86	0.2 0.4 0.6 0.8 1.0 1.2 1.4	110 113 91 64 53 55 56	152 150 125 100 86 91 91	209 279 242 223 174 164	231 292 254 245 215 211	1.36 2.71 4.07 5.43 6.79 8.14 9.50	1.04 2.08 3.13 4.17 5.21 6.25 7.29
		141	6/	6,79	5,21	1,5					10,10	7,01

L:C 2.0x1.0 Cell

L:C 1.0x1.0 Cell

						Current density	Cell configuration					
L:C 2.0 × 1.0						(Add -)	L;C 1.0	× 1,0				
50 RH 100 RH		I	Cathode velocity (m s ⁻¹)	Anode velocity (m s ⁻¹)		50 RH		100 RH		Cathode velocity (m s ⁻¹)	Anode velocity (m s ⁻¹)	
CH (mg)	L (mg)	CH (mg)	L (mg)	((CH (mg)	L (mg)	CH (mg)	L(mg)		` ´
95	204	268	363	2,04	1,56	0,2	163	167	269	256	1,36	1.04
76	170	307	428	4.07	3,13	0.4	94	118	300	283	2,71	2,08
79	182	271	394	6,11	4,69	0.6	81	116	273	278	4.07	3,13
88	195	190	354	8,14	6,25	0,8	73	110	230	260	5,43	4.17
90	200	174	333	10,18	7.81	1.0	56	89	212	247	6,79	5,21
81	179			12.21	9,38	1.2	59	92	189	228	8,14	6,25
				14,25	10,94	1.4	57	90	191	227	9,50	7,29
				15.27	11,72	1.5	55	86	170	211	10,18	7.81

Results indicate:

(1) for L:C ratios of one, the liquid water tends to preferentially accumulate under landings rather than in, or under the channels,

(2) water storage is not only a function of diffusion media but also dependent on the flow-field geometry and the number of interfaces for a hydrophilic channel wall,

(3) it is possible to obtain similar cell performance at low to moderate current density with vastly different amounts of stored water by tailoring the flow-field geometry,

(4) as the L:C ratio is reduced, the liquid stored in the cell decreases, with an optimal condition for L:C ratios smaller than 2:3,

(5) the number of channel–DM interface for the same L:C ratio has an important influence on water accumulation. Corners are preferred water storage sites and a reduced number of channel–DM interface corresponds to less corners and turns for a serpentine design which results in low water mass in the cell,

(6) at dry operation, a high L:C ratio can be helpful, while at high humidity ratio, a low L:C is preferred.

- $f = \text{friction factor} \\ L = \text{channel length, m} \\ D_H = \text{hydraulic diameter, m} \\ \rho = \text{fluid density, kg m}^{-3} \\ v = \text{average velocity, m s}^{-1} \\ L = \frac{A_{\text{cell}}}{N_{\text{ch}}(w_{\text{ch}} + w_{\text{L}})} \\ D_H = \frac{2w_{\text{ch}}d_{\text{ch}}}{w_{\text{ch}} + d_{\text{ch}}}$
- K = local resistance (for example in sharp turns)

©2002 by Frano Barbir.

$$Re = \frac{\rho v D_H}{\mu}$$

Viscosity of fuel cell gases (at 25°C)

	Viscosity kg m ⁻¹ s ⁻¹	Coefficient C
Hydrogen	0.92×10 ⁻⁵	72
Air	1.81×10⁻⁵	120
Water vapor	1.02×10 ⁻⁵	660

$$\mu = \mu_0 \left(\frac{T_0 + C}{T + C} \right) \left(\frac{T}{T_0} \right)^{\frac{3}{2}}$$

$$\mu_{mix} = \frac{\mu_1}{1 + \Psi_1 \frac{M_2}{M_1}} + \frac{\mu_2}{1 + \Psi_2 \frac{M_1}{M_2}}$$

$$\Psi_{1} = \frac{\sqrt{2}}{4} \left(1 + \left(\frac{\mu_{1}}{\mu_{2}}\right)^{0.5} \left(\frac{r_{2}}{r_{1}}\right)^{0.25} \right)^{2} \left(1 + \frac{r_{1}}{r_{2}}\right)^{-0.5}$$
$$\Psi_{2} = \frac{\sqrt{2}}{4} \left(1 + \left(\frac{\mu_{2}}{\mu_{1}}\right)^{0.5} \left(\frac{r_{1}}{r_{2}}\right)^{0.25} \right)^{2} \left(1 + \frac{r_{2}}{r_{1}}\right)^{-0.5}$$

Velocity in channel

$$v_{ch} = \frac{Q_{ch}}{A_{ch}}$$
 $A_{ch} = w_{ch}d_{ch}$

$$\textbf{Q}_{ch} = \frac{\dot{m}_{ch}}{\rho} = \frac{\dot{m}_{ch} \textbf{RT}}{\textbf{PM}}$$

Mass flow rate:

$$\dot{m}_{ch} = S \frac{MI}{nF} \frac{1}{c_{O2in}} \qquad I = iA \qquad A = L_{ch} (w_{ch} + w_L) \qquad r_L = \frac{w_{ch}}{(w_{ch} + w_L)}$$
Velocity in channel
$$A = L_{ch} \frac{w_{ch}}{r_L}$$
For dry air:
$$V_{ch} = \frac{RT}{P} \frac{i}{nF} \frac{S}{c_{O2in}} \frac{L_{ch}}{r_L d_{ch}}$$
For humid air:
$$V_{ch} = \frac{RT}{P - \phi P_{vsat}} \frac{i}{nF} \frac{S}{c_{O2in}} \frac{L_{ch}}{r_L d_{ch}}$$

©2002 by Frano Barbir.

$$\Delta \mathsf{P} = f \;\; \frac{\mathsf{L}}{\mathsf{D}_{\mathsf{H}}} \rho \frac{\overline{\mathsf{v}}^2}{2} + \sum \mathsf{K} \rho \frac{\overline{\mathsf{v}}^2}{2}$$

For laminar flow $\operatorname{Re} f = constant$

For circular channels (pipes): $\operatorname{Re} f = 64$

For rectangular channels: Re $f \approx 55 + 41.5 exp\left(\frac{-3.4}{b/d}\right)$

For square channels: $\operatorname{Re} f \approx 56$

For sharp turns (90°): K = 30 f

For return bends (180°): K = 50 f

$$Q_{stack} = \frac{I}{4F} \frac{S}{r_{02}} \frac{RT}{P - \phi P_{sat}} N_{cell}$$

$$v = \frac{i}{4F} \frac{S}{r_{02}} \frac{(b + w)L}{bd} \frac{RT}{P - \phi P_{sat}}$$

$$\Delta P = f \frac{L}{D_{H}} \rho \frac{\overline{v}^{2}}{2} + \sum \kappa \rho \frac{\overline{v}^{2}}{2}$$

$$Q_{stack}^{out} = \frac{I}{4F} \left(\frac{S}{r_{02}} - 1\right) \frac{RT_{out}}{P_{in} - \Delta P - P_{sat}} N_{cell}$$

 Cathode side pressure drop measured

 Stack at room temperature

Current drawn
 proportional to flow rate
 1.75 LPM every 10 A

Pressure drop as a function of flow rate and stack inlet conditions for both operating and non-operating stack

Stack design/engineering issues

Output is the second second

Output in the second second

Output temperature distribution in each cell

Cooling is required to ensure uniform temperature distribution

Fuel cell cooling schemes

Heat Transfer Paths in Fuel Cell

Sources of Heat in Fuel Cell

Radiation/convection to the surrounding

Conduction through solid Convection with fluids

Conduction/convection through porous media

Effect of cooling cell distribution

CFD simulation of temperature distribution in a portion of a flow field

Limitation of Edge Cooling: Conductivity of Material

Effect on electrical resistance

contact resistance

example of pressure distribution

Electrical resistance

Resistance is a function of clamping force

V. Mishra, F. Yang and R. Pitchumani, Electrical contact resistance between gas diffusion layers and bi-polar plates in a PEM fuel cell, Proc. 2nd Int. Conf. Fuel Cell Science, Engineering and Technology. Rochester, NY, 2004

Electrical resistance

Contact Pressure Investigation

Compression = difference in MEA thickness before and after installation in the cell

Contact Pressure Investigation

Electrical resistance

Cell/stack compression

Uniform

Hydraulic or pneumatic piston

Cell compression

Avoiding loss of stack compression

Bellville washers on tie-rods

A Novel Approach: springs (coil or polyurethane) – central compression

Cell compression

Stack design/engineering issues

- Output is the second second
- Output in the second second
- Our construction of the second sec
- Minimal resistive losses
 - good electrical contacts
 - selection of materials
- Account for thermal expansion
- No crossover or overboard leaks
- Minimum pressure drop (reactant gases and coolant)
- No water accumulation pockets
- Design for manufacture/design for assembly

Conclusions

- A fuel cell stack is a simple, yet complex device
- Uniformity of local conditions is essential for good design
- Understanding of operating conditions is important
- Information may be gathered through modeling/numerical simulations and experimentally
- Selection of key parameters and conditions must be made from the system perspective
- Good stack design with commercially available MEAs should yield close to 1 W/cm²

BALLARD

PEM Fuel Cell Stacks for back-up power

PRODUCT SPECIFICATIONS

300 W – 3 kW

Type:	PEM (Proton Exchange Membrane) fuel cell stack	
Performance:	Rated Power	42 W/cell
-	Rated current	65 Amps
	DC voltage	642 mV/cell
Fuel:	Hydrogen	99.95% or better
	Fuel supply pressure	0.15 to 0.5 barg
	Fuel flow rate	~0.5 słpm/cell²
Oxidant/Coolant:	Coolant	Air
	Coolant flow rate	~70 slpm/cell ²
Temperatures:	Operating temperature	-20°C to 52°C
- 10	Start up temperature	≥ -10°C
Start Up Time:	Start up to 80% rated power	~20 seconds
Physical Characteristics:	Length x width x height	363 x 103 x 351 mm
(Jo-cen stack)	Mass	11.0 kg
Product Certification	CAN/CSA-C22.2 No. 62282-2 Fu	el Cell Modules

BALLARD^{*}, Ballard[®], Powered by Ballard[®], FCgen[™] and FCvelocity[™] are trademarks of Ballard Power Systems Inc.

BALLARD

PRODUCT SPECIFICATIONS

Туре:	PEM (Proton Exchange Membrane) fuel cell stack		
Performance:	Rated Power	1234 W DC	
Fuel:	Reformate	> 72% H2 typical < 10 ppm CO	
Oxidant:		Filtered Air	
Operating Conditions:	Start-up temperature	> 5° C	
	Coolant temperature	57 – 67° C	
	Relative humidity	90 - 100%	
Durability:	Target lifetime	40,000 hours	
	On-Off cycles	4,000	
Physical:	Length x width x height	343mm x 153mm x 258mm	
	Weight	12kg (dry)	
	Volume	17L	
Additional Features:	Cover		
	Cell mounting harness	BA	

PEM Fuel Cell Stacks for residential cogeneration

BALLARD', Ballard®, Powered by Ballard®, FCgen™ and FCvelocity™ are trademarks of Ballard Power Systems Inc.

BALLARD°

PRODUCT SPECIFICATIONS

Rated Power [kW] ¹	4.4	8.8	13.2	19.3
DC voltage (at 300A) ¹	14.6	29.3	44	64.3
Mass (with no coolant) [kg]	7.2	10	13	17
Stack core length [mm]	107	167	228	313
Stack core width [mm]	760	760	760	760
Stack core height [mm]	60	60	60	60

Туре:	PEM (Proton Exchange Membrane) fuel cell stack	
Performance:	Maximum current	300A
	Shock and vibration	Automotive ²
Fuel:	Fuel composition (pre-humidification)	≥ 85% H ₂ ³ ≤ 15% inert ³
Oxidant:	Oxidant composition (pre-humidification)	Compressed ambient
Stack Temperatures:	Storage temperature	2 to 40° C (36 to 104° F)
	Start-up temperature	≥ 2° C (≥ 36° F)
	Fluid inlet temperature (operating)	2 to 65° C4 (36 to 150° F)1
	External stack temperature (operating)	-25 to 75° C4 (-13 to 167° F)*

PEM Fuel Cell Stacks for motive power

Material handling: forklift trucks

BALLARD^{*}, Ballard[®], Powered by Ballard[®], FCgen[™] and FCvelocity[™] are trademarks of Ballard Power Systems Inc.

BALLARD

PEM Fuel Cell Stacks for motive power

Bus and Heavy duty

PRODUCT SPECIFICATIONS

Gross Power:		75 kW	150 kW
Performance:	DC voltage	275 – 400V	550 - 800V
	Maximum current	300A	300A
Physical:	Weight (dry)	< 350 kg (<700 lbs)	< 400 kg (< 990 lbs)
	Length x width x height (without controller box)	1270 x 870 x 505 mm (50 x 34 x 20 in)	
	Volume	0.55m ³ (19.6 cubic ft)	
Fuel:	Gaseous hydrogen	Commercial gra	de (per SAE J2719)
Oxidant:	Air		
Coolant:	50/50 Pure Ethylene Glycol a	nd Water	
Operating Conditions:	Temperature (nominal)	63°C (149°F)	
	Fuel pressure (minimum)	12 barg	
	Air pressure (nominal)	1.2 barg	
Additional Features:	Control interface Enclosure	CANbus IP53	

BALLARD', Ballard®, Powered by Ballard®, FCgen™ and FCvelocity™ are trademarks of Ballard Power Systems Inc.

2500 Stack Power [W]

2000

1500

1000

500

0

250

Т

200

Туре		NedStack P2 FC stack
Performance	rated peak power	2 kW
	current	>225 A
	output voltage	17 ~ 9 V (DC)
	efficiency	45–60 %
Fuel	hydrogen	dry or humidfied
	reformat	80–20 mixture, others on request
Oxidant	ambient air	
Operating conditions	temperature	65 ℃
	fuel pressure	atmospheric
	air pressure	atmospheric
Physical	dimensions	230 × 190 × 270 mm
	weight	19 kg
Operating lifetime	expected	>20.000 hrs

Current [A]

JV-curve NedStack P2

power —

Туре		NedStack P5 FC stack
Performance	rated peak power	5 kW
	current	>225 A
	output voltage	42 ~ 22 V (DC)
	efficiency	45 – 60 %
Fuel	hydrogen	dry or humidfied
	reformat	80–20 mixture, others on request
Oxidant	ambient air	
Operating conditions	temperature	65 ℃
	fuel pressure	atmospheric
	air pressure	atmospheric
Physical	dimensions	370 × 190 × 270 mm
	weight	29 kg
Operating lifetime	expected	>20.000 hrs

JV-curve NedStack P5

NedStack P8

Туре		NedStack P8 FC stack
Performance	rated peak power	8 kW
	current	>225 A
	output voltage	68 ~ 36 V (DC)
	efficiency	45-60 %
Fuel	hydrogen	dry or humidfied
	reformat	80–20 mixture, others on request
Oxidant	ambient air	
Operating conditions	temperature	65 ℃
	fuel pressure	atmospheric
	air pressure	atmospheric
Physical	dimensions	520 × 190 × 270 mm
	weight	36 kg
Operating lifetime	expected	>20.000 hrs

JD-Curve NedStack P8

INTELLIGENT ENERGY Clean fuel and power

INTELLIGENT ENERGY Clean fuel and power

	Specifications	150 Cell	272 Cell	384 Cell
NUVERA	Stack Power Stack Operating Voltage Transient Response Stack Dimensions Stack Weight Coolant	$50kW \pm 4$ $130 - 90V \pm 10$ 10% - 90% < 2 sec $210(h) \times 300 \times 570 mm$ $58kg \pm 10kg$	90kW \pm 4 235 - 165V \pm 10 10% - 90% < 2 sec 210(h) x 600 x 535 mm 107kg \pm 10kg	$127kW \pm 4$ $335 - 235V \pm 10$ 10% - 90% < 2 sec $210(h) \times 900 \times 515 mm$ $155kg \pm 10kg$ *custom configurations available
ANDROMEDA	Type Conductivity	Demi V	Vater or Low Conductivity < 5 pS/cm	/ Glycol
HCS-575 PEM Fuel Cell Stack Series	Flow Rate Pressure Drop T In Max T Out Max	120 lpm ± 6	220 lpm ± 6 400 mbar ± 200 62°C ± 2 70°C ± 2	310 lpm ± 10
	Fuel			
	Type ¹ RH% In ² H2 Stoich I2 Pressure I2 Pressure Drop ^{2,3}		Hydrogen 99.995% Dry Hydrogen Input 3 ± 1 1.1 – 1.8 bar absolute 150 mbar ± 50	
3)xidant			
*384 Cell Stack Shown	ype ir Inlet Pressure Air Pressure Drop ^{3,4} Air Stoich @ low current density Air Stoich @ high current density T In T Max Out		Air 1.1 - 1.8 bar abs $400 \text{ mbar} \pm 100$ 2.5 ± 0.5 1.7 ± 0.1 $< 50^{\circ}\text{C}$ $70^{\circ}\text{C} \pm 2$	

Semi-integrated 100W fuel cell system

- Including: . Connections/Tubing
 - Electronic valves
 - Electronic control box
 - · 100W stack with blower
 - Fuel cell ON/OFF switch
 - · SCU ON/OFF switch

Semi-integrated 200W fuel cell system

- Including: . Connections/Tubing
 - Electronic valves
 - Electronic control box
 - · 200W stack with blower
 - Fuel cell ON/OFF switch
 - SCU ON/OFF switch

H-SERIES PEM Fuel Cell Systems

H-100 FCS-B100

Type of fuel cell	PEN
Number of cells	24
Rated power	
Rated performance	
Output voltage range	
Weight (with fan & casing	a) 0.95ka(2.1lbs)
Size	0x94mm(5.6x4.3x3.7in)
Reactants	Hydrogen and Ali
Rated H2 consumption	1 41/min/83in ³ /min
Hydrogen pressure 0	4-0 45Bar/5 8-6 5PSI
Controller weight	0.4kg/0.88lbs
Hydrogen supply value v	oltage 12\
Purging value voltage	011age121
Purging valve voltage	
Blower voitage	
Ampient temperature	5-35°C(41-95°F)
Max stack temperature	65°C(149°F
Hydrogen purity	
Humidification	Self-humidified
Cooling Air	(integrated cooling fan)
Start up time	0s (room temperature)
Efficiency of system	

H-200 FCS-B200

Type of fuel cell

Number of cells

i territe et et eenerminin	
Rated power	200V
Rated performance	
Output Voltage range	
Weight (with fan & casing)1.5kg(3.3lbs
Size 223x109	x94mm(8.8x4.3x3.7in
Reactants	Hydrogen and Al
Rated H2 consumption	2.8l/min(178in³/min
Hydrogen pressure0.	4-0.45Bar(5.8-6.5PSI
Controller weight	0.4kg/0.88lbs
Hydrogen supply valve vo	oltage12\
Purging valve voltage	
Blower voltage	
Ambient temperature	5-30°C(41-86°F
Max stack temperature	65°C(149°F
Hydrogen purity	
Humidification	Self-humidified
Cooling Air (integrated cooling fan
Start up time3	0s (room temperature
Efficiency of system	

Semi-integrated 500W fuel cell system

- Including: . Connections/Tubing
 - Electronic valves
 - · Electronic control box
 - 500W stack with blower
 - · Fuel cell ON/OFF switch
 - SCU ON/OFF switch

Semi-integrated 1000W fuel cell system

- Including: . Connections/Tubing
 - Electronic valves
 - · Electronic control box
 - 1000W stack with blower
 - Fuel cell ON/OFF switch
 SCU ON/OFF switch

H-SERIES PEM Fuel Cell Systems

FCS-B500

Rated power	500%
Rated performance	21V@24A
Output voltage range	19V-35V
Weight (with fan & casing)	
Size 250x190x	75mm(9.8x7.5x3in)
Reactants	Hydrogen and Air
Rated H ₂ consumption	71/min(398in3/min)
Hydrogen pressure0.5	-0.6Bar(7.2-9.4PSI)
Controller weight	0.45kg(0.99lbs)
Hydrogen supply valve volta	age 12V
Purging valve voltage	
Blower voltage	
Ambient temperature	5-30°C(41-86°F)
Max stack temperature	
Hydrogen purity	99.999% dry H2
Humidification	Self-humidified
Cooling Air (inte	egrated cooling fan
Start up time30s	(room temperature)
Efficiency of system	40%@21\

A

30

fan) 100 fure) 0 16 20

H-1000 FCS-B1000

Type of fuel cell PEM
Number of cells
Rated power
Rated performance 43V@23.5A
Output voltage range 39V-69V
Weight (with fan & casing)
Size
Reactants Hydrogen and Air
Rated H2 consumption 141/min(847in3/min)
Hydrogen pressure0.5-0.6Bar(7.2-9.4PSI)
Controller weight0.45kg(0.99lbs)
Hydrogen supply valve voltage
Purging valve voltage12V
Blower voltage
Ambient temperature 5-30°C(41-86°F)
Max stack temperature
Hydrogen purity 99.999% dry H2
Humidification
Cooling Air (integrated cooling fan)
Start up time
Efficiency of system 40%@43V

