

## Fuel Cell System and System Components

## **Frano Barbir**

### Professor, FESB, University of Split, Croatia

FESB = Faculty (School) of electrical engineering, mechanical engineering and naval architecture

Joint European Summer School for Fuel Cell and Hydrogen Technology





10 kW FC System for a utility vehicle

#### Automotive 50 kW FC System concept

#### Stationary/residential 3.5 kW FC System







#### Passive fuel cell





### **Definition of system**

System – a group of units so combined as to form a whole and to operate in unison Webster Dictionary

## Fuel cell system components

Fuel cell stack

Oxygen/air supply

- Hydrogen supply
- Water and heat management
- Fuel processing and integration of fuel processor
- Power conditioning and controls

### Pure oxygen can be recirculated



#### Water balance

 $\dot{m}_{\rm H2O,in} + \dot{m}_{\rm H2O,gen} = \dot{m}_{\rm H2O,out}$ 

#### Water at exhaust may be present in vapor and liquid form

$$\dot{m}_{H2O,in} + \dot{m}_{H2O,gen} = \dot{m}_{H2O,out(v)} + \dot{m}_{H2O,out(l)}$$

For a closed loop system

 $\dot{m}_{H2O,gen} = \dot{m}_{H2O,out(1)}$ 

Therefore:

 $\dot{m}_{H2O,in} = \dot{m}_{H2O,out(v)}$ 

Water at inlet may be present in vapor and liquid form (depending on pressure, temperature and flow rate)

 $\dot{m}_{H2O,in(v)} + \dot{m}_{H2O,in(l)} = \dot{m}_{H2O,out(v)}$ 

$$\dot{m}_{\rm H2O,in(v)} = min \left[ \frac{IN_{cell}}{4F} M_{\rm H2O} S_{O2} \frac{P_{sat}(t_{in})}{P_{in} - P_{sat}(t_{in})}, \dot{m}_{\rm H2O,out(v)} \right]$$

$$\dot{m}_{\rm H2O,out(v)} = \frac{\rm IN_{cell}}{\rm 4F} M_{\rm H2O} (S_{\rm O2} - 1) \frac{\rm P_{sat}(t_{out})}{\rm P_{out} - \rm P_{sat}(t_{out})}$$

$$\dot{m}_{H2O,in(1)} = \dot{m}_{H2O,out(v)} - \dot{m}_{H2O,in(v)}$$

### t<sub>in</sub> is unknown but may be found out from energy balance





oxygen circulation pum p

> water hseparator 4

O 2 purge

 $h_1 + h_4 = h_2$ 

$$h_1 = \frac{IN_{cell}}{4F} M_{O2} c_{p,O2} t_{tank}$$

$$h_{4} = \frac{IN_{cell}}{4F} \left( S_{O2} - 1 \right) \left[ M_{O2} c_{p,O2} t_{out} + M_{H2O} \frac{P_{sat}(t_{out})}{P_{out} - P_{sat}(t_{out})} \left( c_{p,H2O(v)} t_{out} + h_{fg}^{0} \right) \right]$$

$$h_{2} = \frac{IN_{cell}}{4F}S_{O2}M_{O2}c_{p,O2}t_{in} + \dot{m}_{H2O,in(v)}(c_{p,H2O(v)}t_{in} + h_{fg}^{0}) + \dot{m}_{H2O,in(l)}c_{p,H2O(l)}t_{in}$$

O2 supply

O2 supply

#### Achievable oxygen temperature at the stack inlet when the oxygen exhaust is recirculated back to the inlet



Dashed lines – atmospheric pressure Solid lines – 300 kPa

### Oxygen supply with humidification



Amount of water needed for humidification:

$$\dot{m}_{\rm H2O,in} = \frac{IN_{cell}}{4F} M_{\rm H2O} \left[ S_{\rm O2} \frac{\phi P_{sat}(T_{in})}{P_{in} - \phi P_{sat}(T_{in})} - (S_{\rm O2} - 1) \frac{P_{sat}(T_{out})}{P_{out} - P_{sat}(T_{out})} \right]$$

Heat needed for humidification can be calculated from energy balance:



Heat needed for humidification:

$$\begin{split} & Q_{in} = h_{3} - h_{1} - h_{4} - h_{5} \\ & h_{3} = \frac{IN_{cell}}{4F} S_{O2} \Bigg[ M_{O2} c_{p,O2} t_{st,in} + M_{H2O} \frac{\phi P_{sat}(t_{st,in})}{P_{in} - \phi P_{sat}(t_{st,in})} (c_{p,H2O(v)} t_{st,in} + h_{fg}^{0}) \Bigg] \\ & h_{1} = \frac{IN_{cell}}{4F} M_{O2} c_{p,O2} t_{tank} \\ & h_{4} = \frac{IN_{cell}}{4F} (S_{O2} - 1) \Bigg[ M_{O2} c_{p,O2} t_{out} + M_{H2O} \frac{P_{sat}(t_{out})}{P_{out} - P_{sat}(t_{out})} (c_{p,H2O(v)} t_{out} + h_{fg}^{0}) \Bigg] \\ & h_{5} = \dot{m}_{H2O,in} c_{p,H2O(1)} t_{w} \end{split}$$

## Air supply for fuel cell system



### **Compression power**



Total power needed: 
$$W_{EM} = \frac{W_{comp}}{\eta_{mech} \cdot \eta_{EM}}$$

Temperature at the end of compression: 
$$T_2 = T_1 + \frac{T_1}{\eta_{comp}} \left[ \left( \frac{P_2}{P_1} \right)^{\frac{k-1}{k}} - 1 \right]$$

### **Compression power**



# Air supply

### **Stack operation at different pressures**



# Air supply

### **Compression power**





60°C 300 kPa 30 psig (308 kPa) 170 kPa e.0 (V) e.0 (V) e.0 (V) H2/Air - 20 psig (239 kPa) 1.5/2.0 10 psig (170 kPa) Current density: A/cm<sup>2</sup> 0.8 0.8 e 0.6 5.0 g Cell voltage: 0.66 0.60 V 0.4 0 0.2 0.4 0.6 0.8 1 1.2 1.4 Power density: 0.48 W/cm<sup>2</sup> 0.528 current density (A/cm<sup>2</sup>) W<sub>comp</sub>/W<sub>stack</sub> : 0.4 0.35 0.17 0.083 S=3: V=0.6 0.3 0.25 - S=3; V=0.7 - S=2; V=0.6 0.088 0.040  $W/cm^2$ Compression power \_\_\_S=2; V=0.7 ssion pow 0.2 0.15 0.1 W/cm<sup>2</sup> 0.44 Net power: 0.44 **Selduos** 0.05 250 350 400 100 150 200 300 Efficiency: 0.37 0.37 pressure (kPa)  $W_{net}$ V<sub>cell</sub> W<sub>net</sub>  $\eta_{\text{sys}} = \eta_{\text{FC}}$ 1.482 W<sub>FC</sub>

Air supply

Each stack has different polarization curves

Selection of operating pressure also depends on other factors (temperature, humidity ...)

### Characteristic of positive displacement compressor



Reduction of flow rate does not need a change in back-pressure for positive displacement compressors

### **Characteristic of centrifugal compressor**



## Reduction of flow rate requires reduction of pressure for centrifugal compressors



## Water content in air

at various temperatures and pressures 100% relative humidity



#### Air must be humidified (often saturated)

#### Humidification of air requires both water and heat



Water & Heat

Water & Heat

Humidification of air requires both water and heat



Source of water in fuel cell system: condensed water from the exhaust

Source of heat in fuel cell system: fuel cell, compressor, fuel processor



- Bubbling
- Membrane
- Water injection
- Steam injection





#### Inlet Purge $H_2 + \frac{1}{2} O_2 \rightarrow H_2 O$ Fan Temperature sensor FC CONTROLLER ON OFF $N_{H2O} = -2F$ IN Ĵ FC + LOAD+ Inlet Pressure valve regulator scu OUT FC LOAD-Purge valve V (20ms/div) Stopped CH1: OFF 5V/div 1:1 DC 0.00V CH2: ON 100mV/div 10 DC 0.000\ 100mV/div CH4: ON 2V/div 10:1 DC 0.00V ............................... **Record Length** Main: 1K Zoom: 1K Filter Smoothing: OFF BW: FULL Trace2: Max 468.Om¥ Min --4.000m∀ Trigger Min 1-12.00mV Trace3: Max 52.00mV Mode: SINGLE Trace4: Max 6.0807 Min 800.QmV EDGE Type: Source: CH4 ₽

**Humidification by Short Circuit** 

Water & Heat

## Air supply for fuel cell system

Air supply

Using fuel cell water and heat at the cathode exhaust for Inlet air humidification



# Temperatures and pressures where water generated is sufficient to humidify reactant gases (hydrogen/air)





### Air supply with humidification and liquid water collection



# Air supply

# Air supply for fuel cell system with compressor/expander



### **Expander power**

$$W_{exp} = \dot{m}_{Airout} \cdot c_{p} \cdot T_{out} \left[ 1 - \left(\frac{P_{0}}{P_{out}}\right)^{\frac{k-1}{k}} \right] \eta_{exp}$$

### Temperature at the end of expansion

$$T_{end} = T_{out} - T_{out} \left[ 1 - \left(\frac{P_0}{P_{out}}\right)^{\frac{k-1}{k}} \right] \eta_{exp}$$

# Air supply

### **Compression power w/compressor/expander**



Pressure at the fuel cell inlet Pressure drop: 20 kPa Fuel cell temperature: 80°C

## Fuel cell system components

- Fuel cell stack
- Air supply
- Hydrogen supply
- Water and heat management
- Fuel processing and integration of fuel processor
- Power conditioning and controls

### Hydrogen supply for fuel cell system in dead-end mode with intermittent purging



# Hydrogen supply for fuel cell system with recirculation



# Hydrogen supply for fuel cell system with humidification



# Hydrogen supply for fuel cell system with hydrogen flow through and afterburner w/expander

hydrogen tank ir compressor humidifier humidifier expander M


**Energy balance for the afterburner:** 



The more hydrogen is burned the more power is generated in expander

Does it make sense to waste hydrogen on combustion?



# Fuel cell system components

- Fuel cell stack
- Air supply
- Hydrogen supply
- Water and heat management
- Fuel processing and integration of fuel processor
- Power conditioning and controls



External heat exchanger: Q<sub>HX,rem</sub> = hA LMTD

LMTD = logarithmic mean temperature difference





Water and heat management for fuel cell system with separate water and coolant loops



### **Fuel Cell System with Air Cooling**



Water & Heat







### Example of a hydrogen/oxygen closed-loop fuel cell system





### **First PEM Fuel Cell Powered Submarine (1989)**



# Fuel cell system components

- Fuel cell stack
- Air supply
- Hydrogen supply
- Water and heat management
- Fuel processing and integration of fuel processor
- Power conditioning and controls

### Example of hydrogen/air fuel cell system



### Fuel cell system with fuel processor



# Fuels being considered (other than hydrogen)

- Natural gas
- Propane
- Methanol
- Gasoline
- Other liquid hydrocarbons
  - desulfurized gasoline
  - hydrocrackate
  - alkylate/isomerate
  - gas-to-liquid light paraffin
  - hydrotreated condensate

# Fuel processing processes being considered

- Steam reforming
- Partial oxidation
- Autothermal

### **Basic Equations**

| Combustion:             | $\begin{array}{l} CH_4 + 2O_2 \to CO_2 + 2H_2O(g) + \texttt{802.5 kJ} \\ C_8H_{18} + 12.5O_2 \to \texttt{8CO}_2 + 9H_2O(g) + \texttt{5,063.8 kJ} \\ CH_3OH + 1.5O_2 \to CO_2 + 2H_2O(g) + \texttt{638.5 kJ} \end{array}$     |  |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Partial Oxidation:      | $CH_4 + \frac{1}{2}O_2 \rightarrow CO + 2H_2 + 39.0 \text{ kJ}$<br>$C_8H_{18} + 4O_2 \rightarrow 8CO + 9H_2 + 649.8 \text{ kJ}$<br>$CH_3OH + \frac{1}{2}O_2 \rightarrow CO_2 + 2H_2 + 154.6 \text{ kJ}$                      |  |
| Steam Reforming:        | $\begin{array}{l} CH_4 + H_2O(g) + \textbf{203.0 kJ} \rightarrow CO + 3H_2 \\ C_8H_{18} + 8H_2O(g) + \textbf{1,286.1 kJ} \rightarrow 8CO + 17H_2 \\ CH_3OH + H_2O(g) + \textbf{87.4 kJ} \rightarrow CO_2 + 3H_2 \end{array}$ |  |
| Gas Shift:              | $CO + H_2O(g) \rightarrow CO_2 + H_2 + 37.5 \text{ kJ}$                                                                                                                                                                      |  |
| Preferential oxidation: | $CO + 0.5 O_2 \rightarrow CO_2 + 279.5 \text{ kJ}$                                                                                                                                                                           |  |
| Water evaporation:      | $H_2O(I) + 44.0 \text{ kJ} \rightarrow H_2O(g)$                                                                                                                                                                              |  |

# **HEAT OF FORMATION**

|        | MW      | HF        |
|--------|---------|-----------|
|        |         | kJ/mol    |
| H2     | 2.016   | 0         |
| O2     | 31.9988 | 0         |
| N2     | 14.0067 | 0         |
| CO     | 28.0106 | -113.8768 |
| CO2    | 44.01   | -393.4043 |
| H2O(g) | 18.0153 | -241.9803 |
| H2O(I) | 18.0153 | -286.0212 |
| CH4    | 16.043  | -74.85998 |
| CH3OH  | 32.0424 | -238.8151 |
| C8H18  | 114.23  | -261.2312 |

### **STEAM REFORMING**



### **PARTIAL OXIDATION**



### **AUTOTHERMAL**



Overall equations for  $CH_4 C_8 H_{18}$  and  $CH_3 OH$ 

$$C_nH_mO_p + xO_2 + (2n - 2x - p)H_2O \rightarrow nCO_2 + (2n - 2x - p + m/2)H_2$$

$$\begin{array}{l} \mathsf{CH}_4 + x\mathsf{O}_2 + (2-2x)\mathsf{H}_2\mathsf{O} \to \mathsf{CO}_2 + (4-2x)\mathsf{H}_2\\ \mathsf{C}_8\mathsf{H}_{18} + x\mathsf{O}_2 + (16-2x)\mathsf{H}_2\mathsf{O} \to 8\mathsf{CO}_2 + (25-2x)\mathsf{H}_2\\ \mathsf{CH}_3\mathsf{OH} + x\mathsf{O}_2 + (1-2x)\mathsf{H}_2\mathsf{O} \to \mathsf{CO}_2 + (3-2x)\mathsf{H}_2 \end{array}$$

Efficiency = 
$$\frac{\text{Hydrogen out}}{\text{Fuel in}}$$
 =  $\frac{\text{mol H}_2 \times \text{H}_2 \text{ heating value}}{\text{mol fuel x fuel heating value}}$ 

For CH<sub>4</sub>:

Efficiency (LHV) = 
$$(4 - 2x) \frac{242.0}{802.5} = 0.3 \cdot (4 - 2x)$$
  
Efficiency (HHV) =  $(4 - 2x) \frac{286.0}{890.6} = 0.321 \cdot (4 - 2x)$ 



### Fuel cell system with fuel processor











#### Fuel processor is more than a box!



# Issues on fuel processor integration with fuel cell

- start-up fuel
- quality of gas product during start-up
- start-up time
- controls
- supply pressure (fuel, water, air)
- efficiency (heating value of hydrogen/fuel)
- heat loss
- possibility of using heat from combustion of fuel cell exhaust gases
- reformate composition
  - hydrogen content
  - water content
  - CO content
- reformate temperature
- pressure drop
- water consumption
- quality of water downlet
- emissions
- turn-down ratio
- transient behavior

# **Fuel cell system components**

- Fuel cell stack
- Air supply
- Hydrogen supply
- Water and heat management
- Fuel processing and integration of fuel processor

Power conditioning and controls

# Fuel cell system design from electrical engineering point of view

- Voltage match
- Power conditioning
- Battery requirements
- Controls

Fuel cell generates power at variable voltage! Most loads cannot tolerate big voltage swings! Voltage correction is required!



In addition for AC load DC/AC conversion is required Inverter DC/AC

If ancillary equipment runs of voltage different than the load more than one converter/inverter may be needed in the system!

### **Fuel cell control**

- Start-up procedure
- Monitoring of operating parameters
- Control of operating parameters current air supply hydrogen supply temperature
- Shut-down procedure normal fail-safe

# **Parasitic loads**

- → air supply (blower or compressor/expander)
- → coolant pump
- → water pump(s)
- → heat exchanger fan(s)
- → solenoid valves
- → relays
- → controller



# Fuel Cell System Efficiency (Hydrogen as Fuel)



$$\eta_{sys} = \frac{E_{net}}{H_{in}} = \frac{E_{FC}}{H_{in}} \frac{E_{net}}{E_{FC}}$$
$$\frac{E_{FC}}{H_{in}} = \eta_{FC} \qquad \frac{E_{net}}{E_{FC}} = \eta_{AC} \qquad \frac{E_{aux}}{E_{FC}} = \xi$$
$$\eta_{sys} = \eta_{FC} \eta_{AC} \left( 1 - \frac{\xi}{\eta_{DC}} \right)$$
## **Fuel Cell System Efficiency (with reformer)**



| system efficiency =   | net electricity out<br>LHV fuel in | η <sub>system</sub> = η <sub>ref</sub> η <sub>PROX</sub> η <sub>fu</sub> η <sub>FC</sub> η <sub>aux</sub> |
|-----------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------|
| reformer efficiency = | LHV hydrogen out<br>LHV fuel in    |                                                                                                           |

# **Reformer efficiency**

(POX/Autothermal)



oxygen equivalence ratio = (fuel/air actual)/(fuel/air theoretical for combustion) ©2002 by Frano Barbir.

| system efficiency =   | net electricity out<br>LHV fuel in  | η <sub>system</sub> = η <sub>ref</sub> η <sub>PROX</sub> η <sub>fu</sub> η <sub>FC</sub> η <sub>aux</sub> |
|-----------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------|
| reformer efficiency = | LHV hydrogen out<br>LHV fuel in     |                                                                                                           |
| PROX efficiency =     | LHV hydrogen out<br>LHV hydrogen in |                                                                                                           |

PROX reaction:  $CO + \frac{1}{2}O_2 \rightarrow CO_2$ Oxygen stoichiometric ratio = actual oxygen/theoretical oxygen Unwanted (but unavoidable) reaction:  $H_2 + \frac{1}{2}O_2 \rightarrow H_2O$ 



#### **CO level at PROX Outlet**







#### **Effect of fuel flow rate**



©2002 by Frano Barbir.







©2002 by Frano Barbir.



### **Parasitic load**

- → air supply (blower or compressor/expander)
- → coolant pump
- → water pump(s)
- → heat exchanger fan(s)
- → solenoid valves
- → relays
- → controller



#### **System efficiency**



# Fuel cell system efficiency



Efficiency

# HDL 82 FCPM Efficiency Diagram



- → 750 W of parasitic losses in IDLE MODE
- → 6350 W of parasitic losses @ max power

NUVERA CONFIDENTIAL

Ø NUVERA

#### **Efficiency of fuel cell vs. ICE**



- a) Low pressure, low temperature fuel cell system
- b) High pressure, high temperature fuel cell system
- c) Fuel cell system with an on-board reformer
- d) Compression-ignition engine (diesel)
- e) Spark-ignition engine

# **Fuel Cell Systems**

#### The systems may be as simple as







#### or even more complicated



#### The simplest fuel cell system

# Passive fuel cell with open cathode Metal hydride bottle







## A simple fuel cell system



#### **Nexa Fuel Cell System**



©2008 by Frano Barbir.

# A bit complicated fuel cell system



## Automotive fuel cell system



#### Combined Heat and Power Fuel Cell System





