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Definition of system

System – a group of units so combined 

as to form a whole and to operate in unison

Webster Dictionary



Fuel cell system components

Fuel cell stack

Oxygen/air supply

Hydrogen supply
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Hydrogen supply

Water and heat management

Fuel processing and integration of fuel processor

Power conditioning and controls
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Water balance

Water at exhaust may be present in vapor and liquid form

For a closed loop system
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Therefore:

Water at inlet may be present in vapor and liquid form

(depending on pressure, temperature and flow rate)
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tin is unknown but may be found out from energy balance
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Oxygen supply with humidification

heat exchanger/

humidifier
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Amount of water needed for humidification:

Heat needed for humidification can be calculated from energy balance:
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Air supply for fuel cell system

air exhaust
blower

M

fuel cell

Atmospheric pressure
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fuel cell

backpressure
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Current density:

Cell voltage:

Power density:

Wcomp/Wstack :

Compression power

Net power:
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Selection of operating pressure also depends on other factors 

(temperature, humidity 9)



pressure

Stack & pipeline

pressure/flow rate

characteristics
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Reduction of flow rate does not need a change in back-pressure 

for positive displacement compressors
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air exhaust
air compressor/blower

fuel cell

Often, humidification is required
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Air must be humidified (often saturated)

Humidification of air requires both water and heat

h

saturation line 
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humidifier

dry gas
wet gas

water heat

Humidification of air requires both water and heat
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Source of water in fuel cell system: condensed water from the exhaust

Source of heat in fuel cell system: fuel cell, compressor, fuel processor
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Methods of gas humidification

Bubbling

Membrane

Water injection

Steam injection
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Humidification by Short Circuit 
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air compressor/blower

fuel cell

Using fuel cell water and heat at the cathode exhaust for 

Inlet air humidification

Air supply for fuel cell system
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air exhaust
air compressor/blower

fuel cell

Air supply with humidification and liquid water collection

water

separator
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air compressor

fuel cell

heat exchanger/

humidifier

Air supply for fuel cell system

with compressor/expander

water

separator
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Fuel cell system components

Fuel cell stack

Air supply

Hydrogen supply
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Hydrogen supply

Water and heat management

Fuel processing and integration of fuel processor

Power conditioning and controls
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Hydrogen supply for fuel cell system

in dead-end mode with intermittent purging 
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pressure

regulatorhydrogen tank
fuel cell

hydrogen

purge

Hydrogen supply for fuel cell system

with recirculation 

hydrogen

circulation pump
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Hydrogen supply for fuel cell system

with humidification
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hydrogen
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pressure

regulatorhydrogen tank
fuel cell

Hydrogen supply for fuel cell system

with hydrogen flow through and afterburner w/expander 

air compressor

fuel cell

heat exchanger/

humidifier
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Does it make sense to waste hydrogen on combustion?
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Fuel cell system components

Fuel cell stack

Air supply

Hydrogen supplyW
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Hydrogen supply

Water and heat management

Fuel processing and integration of fuel processor

Power conditioning and controls
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Water and heat management for fuel cell system

fuel cell

water

tank

heat
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water

pump

humidification

cooling loop
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Heat to be removed:

Heat from the fuel cell – heat to the humidifiers

Q = mcwCp,w∆∆∆∆t ∆∆∆∆t = 5-10 °C ���� mcw

Water balance:

Stack:

mH20inAirin + mH2OinH2in + mH2Ogen = mH20inAirout + mH2OinH2out

Tank:

mH20inAirout,L + mH2OinH2out,L = (mH20inAirin – mH2OinAmbAir) + mH2OinH2in

humidification

W
a

te
r 

&
 H

e
a

t



External heat exchanger: QHX,rem = hA LMTD

LMTD = logarithmic mean temperature difference

A = 
QHX,rem

h LMTD
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TFC = 60-80 °C

Tamb = -30/+40 °C

LMTD < 40 °C
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Water and heat management for fuel cell system

with separate water and coolant loops

fuel cell
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cooling loop

water

pump

water
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fuel cell

M cooling loop

Fuel Cell System with Air CoolingFuel Cell System with Air Cooling
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pressure
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air compressor

load

DC/
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hydrogen tank
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purge

Example of a hydrogen/air fuel cell system
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air compressor

battery

heat 

exchangers

hydrogen tank

back-pressure

regulator DC/DC inverter

Actual fuel cell systemActual fuel cell system

fuel cell stack

battery

air

humidifier

water tank

water pump
Mike’s shoes, oops!

main load -

propulsion

motor



hydrogen tank fuel cell

hydrogen

purge

hydrogen

circulation pump

heat exchangers/

humidifiers

pressure

regulator

water

separators

Example of a hydrogen/oxygen closed-loop fuel cell system

O2 purge

oxygen tank

water

tank

heat 
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oxygen

circulation pump

water

pump





First PEM Fuel Cell Powered Submarine (1989)First PEM Fuel Cell Powered Submarine (1989)
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Fuel cell system components

Fuel cell stack

Air supply

Hydrogen supplyHydrogen supply

Water and heat management

Fuel processing and integration of fuel processor

Power conditioning and controls
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e
s
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air exhaust

pressure

regulator

air compressor

load

DC/

DC

hydrogen tank
fuel cell

hydrogen

purge

Example of hydrogen/air fuel cell system

backpressure

regulator

water

tank
heat

exchanger

water

pump

M
M

M

fan

heat exchanger/

humidifier

start-up

battery
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Fuel cell system with fuel processor

air exhaust

air compressor

load

DC/

DC

fuel cell

hydrogen

purge

fuel

fuel processor

backpressure

regulator

water

tank
heat

exchanger

water

pump

M
M

M

fan

heat exchanger/

humidifier

start-up

battery
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Fuels being considered (other than hydrogen)

• Natural gas

• Propane

• Methanol

• Gasoline

• Other liquid hydrocarbons
• desulfurized gasoline

• hydrocrackate• hydrocrackate

• alkylate/isomerate

• gas-to-liquid light paraffin

• hydrotreated condensate

Fuel processing processes being considered

• Steam reforming

• Partial oxidation

• Autothermal
©2002 by Frano Barbir.



Basic Equations

Combustion: CH4 + 2O2 →→→→ CO2 + 2H2O(g) + 802.5 kJ

C8H18 + 12.5O2 →→→→ 8CO2 + 9H2O(g) + 5,063.8 kJ

CH3OH + 1.5O2 →→→→ CO2 + 2H2O(g) + 638.5 kJ

Partial Oxidation: CH4 + ½O2 →→→→ CO + 2H2 + 39.0 kJ

C8H18 + 4O2 →→→→ 8CO + 9H2 + 649.8 kJ

CH3OH + ½O2 →→→→ CO2 + 2H2 + 154.6 kJCH3OH + ½O2 →→→→ CO2 + 2H2 + 154.6 kJ

Steam Reforming: CH4 + H2O(g) + 203.0 kJ →→→→ CO + 3H2

C8H18 + 8H2O(g) + 1,286.1 kJ →→→→ 8CO + 17H2

CH3OH + H2O(g) + 87.4 kJ →→→→ CO2 + 3H2

Gas Shift: CO + H2O(g) →→→→ CO2 + H2 + 37.5 kJ

Preferential oxidation: CO + 0.5 O2 →→→→ CO2 + 279.5 kJ

Water evaporation: H2O(l) + 44.0 kJ →→→→ H2O(g)

©2002 by Frano Barbir.



MW HF

kJ/mol

H2 2.016 0

O2 31.9988 0

N2 14.0067 0

HEAT OF FORMATION

N2 14.0067 0

CO 28.0106 -113.8768

CO2 44.01 -393.4043

H2O(g) 18.0153 -241.9803

H2O(l) 18.0153 -286.0212

CH4 16.043 -74.85998

CH3OH 32.0424 -238.8151

C8H18 114.23 -261.2312

Source: R.C. Weast, Handbook of Chemistry and Physics, CRC Press, 1988 



Combustion
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CH4

Air
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N2 Air
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STEAM REFORMING
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Shift
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Fuel

CH4

Air

O2

N H
H2

CO

Air

O2

N2
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PARTIAL OXIDATION
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Shift
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Partial

Oxidation

Fuel

CH4

C3H8

CH3OH

C8H18

:

Air
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N2

Air
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N2
H2H2

Fuel

H2heat
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Shift
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Overall equations for CH4 C8H18 and CH3OH

CnHmOp + xO2 + (2n – 2x – p)H2O →→→→ nCO2 + (2n – 2x – p + m/2)H2

CH4 + xO2 + (2 – 2x)H2O →→→→ CO2 + (4 – 2x)H2

C8H18 + xO2 + (16 – 2x)H2O →→→→ 8CO2 + (25 – 2x)H2

CH3OH + xO2 + (1 – 2x)H2O →→→→ CO2 + (3 – 2x)H2

Efficiency =
Hydrogen out

Fuel in

(4 – 2x)
242.0

802.5
= 0.3 . (4 – 2x)Efficiency (LHV) =

mol H2 x H2 heating value

mol fuel x fuel heating value
=

For CH4:

(4 – 2x)
286.0

890.6
= 0.321 . (4 – 2x)Efficiency (HHV) =



air exhaust

air compressor

fuel cell

fuel

air water

Fuel cell system with fuel processor

backpressure

regulator

M

heat exchanger/

humidifier

water

tank

heat

exchanger

water

pump

M
M fan
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air exhaust

air compressor

fuel cell

fuel

air
water

Integration of fuel cell system with fuel processor

adding air and water supply

M

backpressure

regulator

M

heat exchanger/

humidifier

water

tank

heat

exchanger

water

pump

M
M fan
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air compressor

fuel cell

fuel

Integration of fuel cell system with fuel processor

adding combustion of exhaust gases

M

heat exchanger/

humidifier

water

tank

heat

exchanger

water

pump

M
M fan

expander

M
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air compressor

fuel cell

fuel

Integration of fuel cell system with fuel processor

adding cooling of anode gas

M

water

tank

heat

exchanger

water

pump

M
M

M

fan

heat exchanger/

humidifier
expander
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air compressor

fuel cell

fuel

Integration of fuel cell system with fuel processor

adding condensing of exhaust gas

M

water

tank

heat

exchanger

water

pump

M
M

M

fan

heat exchanger/

humidifier

M

condenser

expander
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air compressor

fuel cell

fuel

Integration of fuel cell system with fuel processor

adding a separate cooling loop

M

water

tank

heat

exchanger

coolant

pump

M
M

M

fan

heat exchanger/

humidifier

M

condenser

expander
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fuel

processor

Fuel processor is more than a box!

steam

generator

tail gas

burner

PROX

heat exchanger

exhaust

water

anode tail gas

cathode tail gas
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reformer

reactor

PROX

reactor

PROX

reactor

desulfurizer preheater

shift

reactor

heat exchanger

air

fuel

reformate gas

coolant



Issues on fuel processor integration with fuel cell
• start-up fuel

• quality of gas product during start-up

• start-up time

• controls

• supply pressure (fuel, water, air)

• efficiency (heating value of hydrogen/fuel)

• heat loss

• possibility of using heat from combustion of fuel cell exhaust gases

• reformate composition • reformate composition 

• hydrogen content 

• water content

• CO content

• reformate temperature

• pressure drop

• water consumption

• quality of water downlet

• emissions

• turn-down ratio

• transient behavior

©2002 by Frano Barbir.



Fuel cell system components

Fuel cell stack

Air supply

Hydrogen supplyHydrogen supply

Water and heat management

Fuel processing and integration of fuel processor

Power conditioning and controls
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Fuel cell system design 
from electrical engineering point of view

Voltage match

Power conditioningPower conditioning

Battery requirements

Controls

©2002 by Frano Barbir.
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S
y
s
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m
 v

o
lt

a
g

e

Fuel cell generates power at variable voltage!

Most loads cannot tolerate big voltage swings!

Voltage correction is required!

Voltage increase is required Boost converter DC/DC

Voltage increase and 

decrease is required
Buck-boost converter DC/DC

power

S
y
s
te

m
 v

o
lt

a
g

e

Voltage decrease is required Buck converter DC/DC

Pnom

In addition for AC load DC/AC conversion is required 

If ancillary equipment runs of voltage different than the load

more than one converter/inverter may be needed in the system!

Inverter DC/AC

©2002 by Frano Barbir.
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Fuel cell control

� Start-up procedure

� Monitoring of operating parameters

� Control of operating parameters

currentcurrent

air supply

hydrogen supply

temperature

� Shut-down procedure

normal

fail-safe

©2002 by Frano Barbir.
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Parasitic loads

� air supply (blower or compressor/expander)

� coolant pump

� water pump(s)

� heat exchanger fan(s)

� solenoid valves

� relays

� controller

©2002 by Frano Barbir.
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Fuel

cell

Ancillary

equipment

Hin
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Enet
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Fuel Cell System Efficiency (Hydrogen as Fuel)
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system efficiency  =
net electricity out

LHV fuel in
ηηηηsystem = ηηηηrefηηηηPROXηηηηfuηηηηFCηηηηaux

fuel
reformate

+ CO

reformate

(H2) DC AC or DC

unused H2

Fuel Cell System Efficiency (with reformer)

©2002 by Frano Barbir.

reformer PROX fuel cell

balance of plant (auxiliaries)

fuel + CO (H2) DC AC or DC
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Definition of system efficiency

system efficiency  =
net electricity out

LHV fuel in
ηηηηsystem = ηηηηrefηηηηPROXηηηηfuηηηηFCηηηηaux

reformer efficiency =
LHV hydrogen out

LHV fuel in
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Reformer efficiency
(POX/Autothermal)

octane

methanol

x
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2 3 4 5 6 
oxygen equivalence ratio

oxygen equivalence ratio = (fuel/air actual)/(fuel/air theoretical for combustion)

x
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Definition of system efficiency

reformer efficiency =
LHV hydrogen out

LHV fuel in

system efficiency  =
net electricity out

LHV fuel in
ηηηηsystem = ηηηηrefηηηηPROXηηηηfuηηηηFCηηηηaux

PROX efficiency =
LHV hydrogen out 

PROX efficiency =
LHV hydrogen in

©2002 by Frano Barbir.
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PROX reaction: CO + ½ O2 ���� CO2

Oxygen stoichiometric ratio = actual oxygen/theoretical oxygen
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Definition of system efficiency

reformer efficiency =
LHV hydrogen out

LHV fuel in

system efficiency  =
net electricity out

LHV fuel in
ηηηηsystem = ηηηηrefηηηηPROXηηηηfuηηηηFCηηηηaux

PROX efficiency =
LHV hydrogen out 

PROX efficiency =
LHV hydrogen in

fuel utilization =
LHV hydrogen consumed 

LHV hydrogen in fuel cell

©2002 by Frano Barbir.
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Definition of system efficiency

reformer efficiency =
LHV hydrogen out

LHV fuel in

system efficiency  =
net electricity out

LHV fuel in
ηηηηsystem = ηηηηrefηηηηPROXηηηηfuηηηηFCηηηηaux

PROX efficiency =
LHV hydrogen out 

fuel cell efficiency =
gross electricity out

LHV hydrogen consumed
ηηηηFC = 

Vcell

1.254

PROX efficiency =
LHV hydrogen in

fuel utilization =
LHV hydrogen consumed 

LHV hydrogen in fuel cell
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Fuel cell efficiency

ηηηηfc = 
electricity out

hydrogen in

I�V

mH2�∆∆∆∆H�=

hydrogen

mass flow

rate (g/s)

hydrogen

heating value

141,900 J/g (HHV)

120,000 J/g (LHV)

current (A) voltage (V)

hydrogen

mH2 =
I�MH2

n�F

Faraday’s

constant

96,485 C

number of

electrons

involved (2)

hydrogen

molecular

weight

2.016 g/mol

ηηηηfc = V/1.482  (HHV)

ηηηηfc = V/1.254  (LHV)

�

©2002 by Frano Barbir.



Definition of system efficiency

reformer efficiency =
LHV hydrogen out

LHV fuel in

system efficiency  =
net electricity out

LHV fuel in
ηηηηsystem = ηηηηrefηηηηPROXηηηηfuηηηηFCηηηηaux

PROX efficiency =
LHV hydrogen out 

Wnet

Wnet + Waux

ηηηηaux =aux load eff. =
net electricity out

gross electricity out

fuel cell efficiency =
gross electricity out

LHV hydrogen consumed
ηηηηFC = 

Vcell

1.254

PROX efficiency =
LHV hydrogen in

fuel utilization =
LHV hydrogen consumed 

LHV hydrogen in fuel cell
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reformer PROX fuel cell

fuel
reformate

+ CO

reformate

(H2) DC AC or DC

unused H2

aux load eff. =
net electricity out

gross electricity out

Wnet

WFC or Wgross

Wnet

Wnet + Waux

ηηηηaux =

balance of plant (auxiliaries)

Waux

FC

aux

W

W
=ξ

( )ξ−η=η DCaux










η
ξ

−η=η
AC

DCaux 1

Waux same current and voltage as Wnet

Waux different current and voltage than Wnet



Parasitic load

� air supply (blower or compressor/expander)

� coolant pump

� water pump(s)

� heat exchanger fan(s)

� solenoid valves

� relays

� controller
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System efficiency
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The systems may be as simple as

or as complicated as

Fuel Cell SystemsFuel Cell Systems

or as complicated as

or even more complicated



The simplest fuel cell system

Passive fuel cell with open cathode

Metal hydride bottle



A simple fuel cell system



fuel cell

M

Nexa Fuel Cell SystemNexa Fuel Cell System
hydrogen

purgepressure

regulator
hydrogen 

supply

humidifier

M

fan
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air compressor

battery

heat 

exchangers

hydrogen tank

back-pressure

regulator DC/DC inverter

A bit complicated fuel cell systemA bit complicated fuel cell system

fuel cell stack

battery

air

humidifier

water tank

water pump
Mike’s shoes, oops!

main load -

propulsion

motor



Automotive fuel cell systemAutomotive fuel cell system



blower

fuel cell stack

air filter humidifier

tail gas burner
reformer

desulfurizer

shift converter

PROX

blower

fuel cell stack

air filter humidifier

tail gas burner
reformer

desulfurizer

shift converter

PROX

Combined Heat and Power Combined Heat and Power 

Fuel Cell SystemFuel Cell System

coolant

pump

fuel in

condenser

air filter humidifier

water

pump
gas boiler domestic hot

water system

heat 

exchanger
coolant

pump

fuel in

condenser

air filter humidifier
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pump
gas boiler domestic hot

water system
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