UNIVERSITY^{OF} BIRMINGHAM ## HYDROGEN MARKETS & INFRASTRUCTURE #### Dr Aman Dhir University of Birmingham Prof Robert Steinberger-Wilckens a.dhir@bham.ac.uk www.fuelcells.bham.ac.uk 2nd Summer School 2012 Crete #### Learning Objectives - Understand: - - Where are the Markets - Where hydrogen is used - Current progress and ideas ## Where would Hydrogen be used? @####...don't say Fuel Cells...####@ UNIVERSITY^{OF} BIRMINGHAM #### Contents - 1. Current Hydrogen Applications and Uses - Hydrogen Markets and Costs of Hydrogen - 3. Distribution and Infrastructure - 4. Hydrogen as a Vehicle Fuel - 5. Hydrogen as a energy store - 6. The future ## 1. Hydrogen Applications #### Hydrogen Applications - Ammonia synthesis - Crude oil refining - Methanol production - Hydrogenation of fats in food processing - Metallurgy - Cooling in gas turbines - Production of artificial diamonds - Chemical industry - Energetic use - Town gas #### Hydrogen Applications - Ammonia synthesis - Crude oil refining - Methanol production - Hydrogenation of fats in food processing - Metallurgy - Cooling in gas turbines - Production of artificial diamonds - Chemical industry - Energetic use - Town gas #### Ammonia Synthesis - Process: - \circ $N_2 + 3H_2$ ----> $2 NH_3$ (Haber-Bosch process) - Usage: - Cooling agent (ammonia refrigeration) - Basis for products: - Fertilisers, explosives, fibers/plastics, pharmaceuticals, pulp & paper - H₂ annual demand - 33 x 10⁹ Nm³ in EU (55% of total) - 250 x 10⁹ Nm³ worldwide - 50% of total hydrogen consumption (was: 80% in the 1980ies) #### Crude Oil Refining 1/2 - Multi-stage Process: - Distillation Tower at atmospheric pressure: - o division into 4 fractions: - kerosene, light/heavy gas oil, fuel oil (,Naphtha') - Cracking by heating, catalytic reforming and fluid catalytic reforming follow for various qualities of fuel - Alternatively "Hydrocracking" with hydrogen at ca. 150 bar also delivers various fuel stock under flexible production conditions - Reforming of naphtha leads to excess hydrogen production from paraffin cracking. BIRMINGHAM ## Crude Oil Refining 2/2 - Hydrogen usage: - de-sulphurisation of intermediate products (to prevent poisoning of catalysts and/or improve quality) by forming H₂S - Hydrocracking - Production by - naphtha reforming (by-product) - fuel gas/methane reforming - H₂ annual demand - 17 x 109 Nm³ in EU (30% of total) - 185 x 109 Nm³ worldwide - 37% of total hydrogen consumption #### Methanol Synthesis 1/2 - Two-stage Process: - Steam reforming of natural gas (Syngas, H₂ and CO) - Catalytic (metal oxide) formation of methanol under pressure and high temperature - Followed by purification by distillation - Alternative: - Synthesis from CO₂ and H₂ - Energy demand is higher, though, but no fossil fuels necessary if hydrogen is available from other sources #### Methanol Synthesis 2/2 - Products: - Methanol - MTBE (methyl tertiary butyl ether, gasoline additive) - Formaldehyde - Others. - H₂ annual demand - 4 x 109 Nm³ in EU (7% of total) - 40x 109 Nm³ worldwide - 8% of total hydrogen consumption #### Hythane - "Synthetic" Town Gas made from natural gas and hydrogen - Possible interim energy carrier for transporting hydrogen via the natural gas network - Hydrogen content of 5 to 15% supposedly has no (or hardly any) influence on gas appliances - Hydrogen content of up to 30 to 50% would require changes to gas appliances, but no replacement of installations ## Further Applications 1/2 - Food processing: hydrogenation of plant fats for hardening (margarine and cooking fat), inert gas in processing - Metallurgy: use of pure hydrogen/oxygen flames in cutting/welding/brazing, annealing, reduction of metal oxides - Power industry: generator cooling - Electronics industry: inert atmospheres for semiconductor producing furnaces #### Further Applications 2/2 - Glass industry: high purity flames for cutting and welding, artificial gemstone/diamond production, high purity atmospheres in furnaces - Space industry: rocket fuel - Balloon gas - Chemical industry: styrene, ethylene, peroxide production #### Future Applications - Natural gas substitute: - Gas heaters/boilers, cookers, motors - Electricity storage medium: - Electrolytic conversion to electricity and back to electricity by fuel cell - Fuel cells: - Emission free (locally) cogeneration of heat and electricity - Hydrogen vehicles: - Emission free (locally) vehicles with fuel cells or hydrogen ICE (internal combustion engine) #### 2. Hydrogen Markets #### Market History - Hydrogen was first used at large scale with the balloons and airships coming into use at the end of the 19th century - leading up to the Zeppelin development - Many of the now well-known material problems were then first encountered (steel embrittlement, requirements for sealings and washers/gaskets, leakage rates from storage vessels etc.) - Large scale employment of hydrogen was then spurred by the fertiliser industry in the early 20th century UNIVERSITY^{OF} BIRMINGHAM #### Market History - Town gas in the UK till 1950's - Up to the mid-nineties many town gas networks in Germany (esp. East Germany and Berlin), in 1992 3 x 1012 Nm³ (being approx. 10% of the pipeline supplied gas in German energy supply) - Town gas supply still in operation in Stockholm City. #### Size of the Market - Hydrogen production - ca. 500 x 10⁹ Nm³ per year worldwide - ca. 60 x 10⁹ Nm³ per year in EU (ca. 180 GWh) - Annual rise since year 2000 ca. 5 to 10% - Comparison: - world natural gas market 2.4 x 10¹² Nm³ p.a. - EU natural gas market 470 x 10⁹ Nm³ p.a. (ca. 5 TWh) #### Market Segments • EU statistics: Captive By-product Merchant Direct energetic Surplus (stranded) ca. 55 x 10⁹ Nm³ (93%) ca. 3 x 10⁹ Nm³ (5%) ca. 1.2 x 10⁹ Nm³ (2%) ca. 0.5 x 10⁹ Nm³ ca. 0.015 x 10⁹ Nm³ #### **European Production** - EU figures for ca. 1997 - Out of total of 60 x 10⁹ Nm³ p.a UNIVERSITYOF BIRMINGHAM #### Key Players #### Where in the EU? - * Production Site (1 to 3) - Production Site (3 to 7) - Production Site (> 7) UNIVERSITY^{of} Birmingham ## Hydrogen Costs | Hydrogen Quality | 3.0 | 3.0 | 5.0 | 5.0 | |---|-------------|-------------|-------------|-------------| | Item | Costs [EUR] | Costs [EUR] | Costs [EUR] | Costs [EUR] | | 10 l bottle / 1.8 Nm ³ | 48.10 | | 61.50 | | | 50 l bottle / 8.9 Nm ³ | | 67.80 | | 111.90 | | Energy Surcharge per Bottle | 1.00 | | | | | Surcharge for Transporting Hazardous Materials | 18.00 | | | | | Rental Fee per Bottle / daily | 0.39 | | | | | Rental Fee per Bottle / flat rate for 1.5 years | 160.00 | | | | | Effective Costs per Nm ³ (excluding bottle rental) | 40.00 | 9.71 | 46.00 | 16.74 | #### Hydrogen Costs UNIVERSITY^{OF} BIRMINGHAM #### Cost Breakdown 3: 1 Ratio Exists on comparison..... #### Why the difference in costs? #### Internal costs: - costs of production and delivery of vehicles and fuel - taxes and levys - market price (as a sum of the above plus company profit) #### External costs - costs caused for the society, but not attributed or attributable to single products or services - health services due to environmental pollution - health and other services due to noise pollution - public services in safety, accident prevention etc. - general costs of land use, rain run-off management etc. UNIVERSITY^{OF} BIRMINGHAM #### 3. Hydrogen Distribution #### Distribution UNIVERSITY^{of} BIRMINGHAM #### The process Joan Ogden and Christopher Yang, "Implementing a Hydrogen Energy Infrastructure: Storage Options and System Design" (UCD-ITS-RR-05-28), 2005 UNIVERSITY^{OF} BIRMINGHAM #### Distribution - Conventionally distributed - Gas Cylinders / Large Vessels - Liquefied tanker - Liquefied pipeline - Large scale pipeline? - Expensive - Existing lines - Dilute hydrogen to 10% - Changeover problems? UNIVERSITY^{OF} BIRMINGHAM Photographs courtesy of PLANET and HyNet # Marine Transportation: Gas/Liquid Tanker #### Pipeline UNIVERSITY^{OF} BIRMINGHAM Leading Japanese automakers & energy companies have agreed on a scenario which sees commercialization of FCVs and hydrogen stations beginning in 2015. FCCJ, http://www.fccj.jp/pdf/20080704sks1e.pdf UNIVERSITY^{OF} BIRMINGHAM # 4. Hydrogen in the vehicle Fuel Market: Refuelling infrastructure ### ...Re fuelling - Pressure drop between fuelling station and vehicle should be around 150 bar for fuelling process < 10 minutes - From vehicle tank end-pressure 350 bar it follows that the storage pressure needs to be around 500 bar - Due to the negative Joule-Thompson effect hydrogen will heat up when filling vehicle tank; subsequent cooling to ambient temperature reduces pressure in tank -> overfilling' necessary - at vehicle tank pressure 700 bar, storage pressure of ca. 1.000 bar would be necessary -> other filling technologies than pressure drop, for instance cooling during filling (isothermal filling) UNIVERSITYOF BIRMINGHAM ## Need filling stations - Number of (conventional) fuelling stations in Germany: 15,000 - Expense to convert a fuelling station to hydrogen: - ca. € 1M - Number of gasoline filling stations in U.S. ca. 170.000 Gasoline (LNG) distribution solely through road transport #### US Scenario - Vehicles **Projection for U.S.:** - DD delayed - MD moderate - SD successful development UNIVERSITY^{of} Birmingham ### US Scenario - Stations #### **Projection for U.S.:** - DD delayed - MD moderate - SD successful development #### UNIVERSITYOF BIRMINGHAM #### Costs of Fuel Stations Projection for the U.S. - small = 500 kg H_2 p.day - medium = $2.500 \text{ kg H}_2 \text{ p.day}$ # Filling Stations Cute Project # Components UNIVERSITYOF BIRMINGHAM # Cute Project Stations # Liquid Hydrogen Stations ### **SMR Station** # 5. Hydrogen as a renewable energy store # Why do we need energy stores? - Reduction of fluctuations - Temporal shift of power - Integration of surplus/stranded production # Renewable energy sources | Source | Туре | Heat | Electricity | Other | |-------------|--------------|----------------|---|-----------------| | Solar | thermal | Emile
Emile | | | | | PV | | Emile
Marie Marie | | | | tower | | Em Em | | | | algae | (E) | (\(\xi_{\text{M}} \) | H ₂ | | Wind | repellor | | Emile
Emile | | | Solar/Wind | thermal flow | | Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile
Emile | | | Geothermal | | | Emile Sund | | | Hydro | stream | | Emile
Emile | | | | dam | | Em Em | | | Tidal/ wave | | | Emile
Emile | | | Biomass | combustion | | Emile
Emile | | | | fermentation | (E | (E M E) | CH ₄ | | | pyrolysis | (Em) | (Emit) | syn-gas | #### Storage Methods #### Conventional - pumped storage - Batteries - flywheels - Novel - compressed air - super-caps - hydrogen - limited by topography - capacity tied to device itself - limited capacity - limited efficiency - limited efficiency - arbitrary storage size # Typical energy use # **Typical Energy Production** Solar production # Why is hydrogen important? ERSITY^{of} INGHAM # What couplings? - Sources (realistic): - Wind energy (excess and sinking feed in tariffs) - Biomass (gasification, reforming of biogas/methane) - Hydro - Far away: - Photovoltaics - Thermolysis with solar energy ### 6. The Future #### **UK Investment** BAXI CHP H₂ Filling Station 5 x Hybrid Vehicles # House in the West Midlands heated by a Hydrogen Fuel Cell **PEMFC** Fuel: Natural Gas The fuel cell has a dual purpose: - (i) Supply of electricity - (ii) Heating ### CABLED □ £25 national project (£7million West Midlands) Hydrogen Refueling Station UoB Royal Mail Hydrogen ICE and HFCHV UoB UNIVERSITYOF BIRMINGHAM # PRESENT Hydrogen LOCATIONS # NEW 2013 LOCATIONS Bergen # Next year..... # Summary - Hydrogen is versatile - Used in many different and broad applications - Distribution is difficult at present - Projects are on going to improve