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1. Intro — who are you? + learning objectives

i

Intro - who am I and who are you/your background?

Electrochemistry?, Physical chemistry?

Learning objectives (2 x SOE lectures):

1. Explain/sketch qualitatively how electrolysis (potentially) can become an important player
in a future energy grid?

2. Explain the basic operation principle for steam electrolysis, CO, electrolysis, co-electrolysis
3. List typical electrode materials incl. requirements and operation conditions

4. Give examples of SOEC degradation issues and explain why some of these can be
somewhat different from what can be observed for similar SOFCs (based on material
properties, test conditions etc.)
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2. Basic working principle — small exercise

i

Only pen & paper “allowed” — no Google or Wikepedia help ©

1. Make a sketch of an SOEC including names for typical electrode and
electrolyte materials

2. Note on your sketch which electrode is cathode, anode, steam/hydrogen
electrode and oxygen electrode

3. Write the electrode reactions and the total reaction for:

a) Electrolysis of steam
b) Electrolysis of carbon dioxide

4. Electrolysis of steam and carbon dioxide — why is this more complex than
just adding reaction a) and b) ?
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2. Basic working principle - answers

i

1. Make a sketch of an SOEC including names for typical electrode and electrolyte materials
2. Note on your sketch which electrode is cathode, anode, fuel electrode and oxygen electrode

...or with barrier layer and
a MIEC electrode
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2. Basic working principle - answers DTU

Write the electrode reactions and the total reaction for:
a) Electrolysis of steam
b) Electrolysis of carbon dioxide

i

Ref. Ebbesen, Jensen, Hauch & Mogensen, "High Temperature Electrolysis”, submitted, InTech, 2012
Ref. Haber, Zeitchr. Physik. Chem., 68, 731 (1909)
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2. Basic working principle — Operating conditions

i

Typical temp.: ~ 800-900 °C

Gas compositions:

H,O electrolysis — avoid Ni oxidation (inlet of p(H,0) = 0.99 atm possible)

CO, electrolysis — avoid catalytic coke formation, T>800 °C and p(C0)<0.9 =
Boudouard reaction shifted towards CO

Current density / cell voltage:

Lab scale Up to 2 A/cm? durability testing

Techn. relevant Potentiostatic / thermo-neutral potential
The possibility for load cycling

Ref. Hauch, ”Solid Oxide Electrolysis Cells — Performance and Durability”, PhD Thesis, DTU (2010)
Ref. Knibbe, Traulsen, Hauch, Ebbesen and Mogensen, J. Electrochem. Soc., 157, B1209 (2010)
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3. SOE from a CO, cycle point of view

H.0

CO;

in the

atmosphere \

.what are the requirements % ®

?
to realize this? Stynltll:ﬁticl
CO; collection petrol/diese
CO,+2 OH_(membrane) SHO + 0032_(membrane) (eCO no mv ’ pe rfo rmance !

?

Fuel synthesis
2 H2 +CO - —CHQ— + HQO

?

CO + H;

durability, reliability....)

0,

Electrolysis cell

2H,0 - 2H, + O,
2C0O, - 2C0O + O,
+
‘0
Concentrated N
CO,

H.0

Ref. Ebbesen, Jensen, Hauch & Mogensen, "High Temperature Electrolysis”, submitted, InTech, 2012
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4. SOE from a economy / fuel prod. prices point of view

9

Our "competitor” crude oail
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4. SOE from a economy / fuel prod. prices point of view

o=
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Commercial low temperature High temperature High temperature
alkaline electrolyser alkaline electrolyser Solid oxide electrolyser
Operation 80 °C 264 °C 850 °C
temperature
Investment cost 4420 €/m? cell area 4420 €/m? cell area 3620 €/m? cell area
‘uel composition — — H,O/H, = 90/10
Cell voltage at
20.25 Alor?? 1.77 volts 1.46 volts 0.92 volts
Cell voltage at
20,50 Alor?? — 1.55 volts 0.95 volts
Cell voltage at Ave. EU price
— . — 1.01 volts
-1.00 Alem’ for retail/end-users
Life time 35 years in 2007 35 years 10 years
Operation time 50 % 50 % 50 %
Irified Water cost 1.6 €/m3 1.6 €/m3 1.6 €/m3
I Electricity prices 2012:
= 7.65 €¢/kWh 7.65 €¢/kWh
lectricity price http://www.energy.eu/
Interest rate 8% 8% 8%
nergy loss in heat 504 5 04 10 %
exchanger

Ref. Atmospheric electrolysers (Norsk Hydro), http://www.hydro.com/electrolysers/ (2008)

Ref. M. H. Miles, G. Kissel, P. W. T. Lu, S. Srinivasan, J. Electrochem. Soc., 123, 332 (1976).

Ref. A. Hauch, S. H. Jensen, S. Ramousse, M. Mogensen, J. Electrochem. Soc., 153, A1741 (2006)
Ref. S. H. Jensen, P. H. Larsen, M. Mogensen, Int. J. Hydrogen Energy, 32, 3253 (2007).
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4. SOE from a economy / fuel prod. prices point of view EIE

<

>
2 2
— AEC -0.25 Alcm? AEC -0.25 Alcm HT-AEC -0.25 A/lcm
8 4 — HT-AEC-0.25 A/lcm? T 350 ~
’IR —— SOEC -0.25 Alcm? o
77 SOEC -1.00 Alcm? + 300 ®
_\? f 84% 80%
@ 97 1250
o
o
5 1 L
2 T 200 5
a
c 41 %
3 T 150 o SOEC -0.25 A/lcm? SOEC -1.00 Alcm?
S 31 S
o 2
jC:\I 1 i T 50 La— 87%
0 T T T T T T T T T T T T T T O
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Electricity price (€¢ / kWh) o
O Electricity E Investment cost B Other cost

The pie chart shows the production price parts given the assumptions on previous slide.

Ref. Ebbesen, Jensen, Hauch & Mogensen, "High Temperature Electrolysis”, submitted, InTech, 2012
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H, production price (€/ kg H>)

4. SOE from a economy / fuel prod. prices point of view
A
——
Based on SOEC at 850 °C, -0.5 A/cm?
10,  —AEC-0.25 Alcm? 60 20 V1000
— HT-AEC -0.25 Alcm? T 45 oy " | pes ®
9 - SOEC-0.25 Alcm? T 385 2 T 5
. | SOEC -1.00 Alcm? | 3eg 8 250 o o
~ ) T 8{
T 325 w, ~ 45 - 10 mV /100! <)
7 1 o o / o
+ 295 3 g | 78
| 1 265 & ?4-0 I 5mV /1000 iy
] 5 935 1 | °
‘. 235 8 = 35 - 145 2
+ 205 S = S
2 T 3.0 1 1.5mV /1000 h 5
4 4 175 © 2 1.0mV /1000 h 1 )
- 5 15
.I. 145 5 ~ 2.5 1 0.5mV /1000 h Z
3 o I No degradation >
T 115 w 20 T T T T T T T T T T T T 85 L
2 85 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Life time (Years)

H, production price vs. lifetime

(Assuming an electricity price of 7.65
€¢/kWh - 2007 electricity price).

Life time (Years)

H, production price for SOECs depending
on lifetime and cell degradation

(Assuming an electricity price of 7.65
€¢/kWh - 2007 electricity price).

For an estimate of syn-gas prodruction prices / SOE economic estimates:

Syngas production via high-temperature steam/CO2 co-electrolysis,

Fu, Mabilat, Zahid, Brisse & Gautier, Energy & Enviro. Sci.,3, 1382 (2010)
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5. Materials & initial performance

- H,O electrolysis Ul

Different oxygen electrode materials

Some of the highest electrolysis performance to date
(850 °C, H,0/H,:50/50; O, to the oxygen electrode).
Ref. S. Ebbesen, Dept. of Energy Conv. and Storage, DTU (former Risg DTU)

| Potential (V)

1250 - —— Ni/YSZ-YSZ-LSM/YSZ
—Ni/YSZ-YSZ-LSCF/CGO
1150 - —— Ni/ScYSZ-YSZ-LSC/CGO
T 050 -
)
8 950
o
2
= 850 -
u]
750 A
f T T T —650 T T T T |
-1.75 -140 -105 -0.70 -035 000 035 070 1.05 140
Current Density (A/cm?)
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1.75

Current density {A."cmzll

Figure 1. (a) V-i curves measured at 973 K. with 15% H.O in H; at the
Co-ceria-Y5Z counter electrode and a P, = | atm at the perovskite-based
electrode. Data are for YSZ composites with LSM (0. LSF (20, and LSCo

Ref. Wang et al., JECS, 153, p.A2066 (2006)
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5. Materials & initial performance - H,O electrolysis
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Different fuel electrode materials

fued coll
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-

0.01

Current density :mﬁh:m”}

0.001 ' :

0.15 0.1 -0.05 0
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0.1

Figure 3. Current-overpotential dependencies obtained on MNi-YSZE (gray

symbols) and ceramic composite Lag 3550 ¢TI0y _-Ceg sLag <0
symbals) electrodes at T50-850°C and Hz/H,0 = 50/50.

755

(black

1
E
8
<
3 o
2
/)]
c
g
S 0.01
[ =
g
-
(&)
0.001

Al
<=
==
electrolyzer fuel cell
& H2/H20=50/50
H2/H20=10/90
H2/H.0=20/80 .
800° )
-0.2 -0.1 0 0.1

Overpotential (V)

Lag 35Srg.65T1103—Ceg sLag 504 75 €electrode at
800C at H,/H,O = 50/50, 20/80, and 10/90.

Ni/YSZ performance results SOFC><SOEC not necessarily a “universal” performance result!

(can be structure dependent)

(Ref. Marina et al., JECS, 153, p.A2066, 2006 - Results obtained on half cells model set-up)
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5. Materials & initial performance — CO,, electrolysis

i

15 -
ASR =0.29 Q-cm? @850 °C, 70 % CO, — 30 % CO
\ 131 (datato -0.25 A/cm? included)
/>—\ =
= 11
(@]
8
S
>
5 09"
@)
50% H,0/50% H,
0.7 - 70% CO,/30% CO
50% C0O,/50% CO
[ I I 05 I I 1
15 -1 0.5 0 0.5 1 15
i (Alcm?)

(Ref. S. D. Ebbesen and M. Mogensen, in Proceedings of the 32nd International Conference & Exposition on Advanced
Ceramics and Composites (ICACC), p. 271, The American Ceramic Society (2008).
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5. Materials & initial performance — CO,/H,0 electrolysis

1.5 -

" *age
1.4 - Ty
¥ NIRu-GOC 51&35*5.-.;.@545
1.3 9 O niRu GDC_D:EI:cIrD',r:Eﬂ ey

i

E 1.2 4 NiRU-GDC, GO, electralysis A

.'E g % Ni-GDC, steam alectrolysis

] M NIAGDE, coslectrolysis

¢ 101 O NGOG, GO, alectrolysis
0.9 5

= Mi-¥5Z, steam slactrolysis, H_£I-'H.='.:-LI-'L-LI; : ;
0.8 - » Mi-YSZ, coslectrolysis, H,OMJ/CO/CO = 252825/25
Ni-YSZ, CO, electralysis, COCO = 5N50 /

Planar Ni-YSZ|YSZ|LSM-YSZ at 850 ° C

0.7 ' - T 1 —50% HyO — 25% Hy — 25% Ar
120 a0 60 30 o ——25% CO; — 25% H0 — 25% CO — 25% Ar
current density (mA cm™) ——50% CO, — 25% CO — 25% Ar
2
) 1.1 -
Electrolyte supported cells (H, electrode/YSZ 8
electrolyte/Pt reference electrode, 800 ° C) S |
g 0.9
0.7 -

-1l2 -10 -08 -06 -04 -0.2 0.0 0.2 0.4 0.6
2

ilAem”
H,0/H, ASRy, = 0.24 Qcm? ASR: = 0.25 Qcm?
CO,/CO: ASRg, = 0.34 Qcm? ASR- = 0.32 Qcm?

H,0/CO,/CO:ASR;, =0.28 Qcm?2  ASR. = 0.27 Qcm?

Ref. P.Kim-Lohsoontorn, J. Bae, J. Power Sources, 196(1), 7161 (2011)
Ref. S. D. Ebbesen, R. Knibbe, M. Mogensen, J. Electrochem. Soc., 159, F482 (2012)
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6. SOE cells — Materials & durability

i

e Let us review the “"demand” on life-time based on economic estimates on fuel
production prices...

6.0

Q ©
©

(@)
<50 =
W + 205 w
E’ 45 10 mV /100 o)
© RE
540 - +175 5
2 40 5 mV /1000 oy
S 35 | 25mV /1000 h o
e - 145 ©
5 }
T 30 1 1.5mV /1000 h g
= 1.0mV /1000 h 1 115 _—
Q >
~ 2.5 0.5mV /1000 h =
I No degradation =

20 T T T T T T T T 85 L

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Life time (Years)

e We'll have a look at two SOEC degradation case stories today
+ incl. a small assignment for you.
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6. Materials & durabil

Ity — gas

purity/Zimpurity

HE

A- Eﬁbﬁlc:_rnrysh of CO: — Cail voltage [
— T —— in-plane volage _
R I o0 &
F:E / \ o g In-plane voltage Cell voltage ,
- 1 [l
; 1ars 4 ' -.||I e i 5‘ I i"
] - x -
:E / Foa = E i =
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B - Electrolysis of H.O ot voage " ] ~ I
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=3 _ Half Fuily
E 12507 \ o -E— L:;:.I s vaind pamvaiad
} 1225 4 -"._ | e E" oall
£ ] ' g .
VAN I Y e e
178 / [l iy ;
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1124 — \\f — 0z = p
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Bl otrodys s ima {h) N
C -Co-electrolysis of Hz0 and CO: — Call vaitage s
o —— A PO Observed change in in-plane voltage
E om) v § measurements made us believe that some
1 : . . . .
T : sort of impurity contamination took place...
z ~—— 0z g
] —— -
5 _\\ == lon &
& ——— az
a 100 200 300 200 500 600 "0 800 900 1000 1100 1200 1300 1200
B wotrol ysis tima fh
Figure 2. Cell voltage and corresponding in-plane voltage at the NifYSZ
electrode  measured during (A} CO, (850°C, -025 Afem?,
T0% CO-30% CO), (B) H;O (830°C, -0.50 Afem”,
30% H,0-30% H,), and (C) co-electrolysis (850°C, —0.25 Asem®,

45% H,0-45% CO,—10% H,).
Ref. Ebbesen, Graves, Hauch, Jensen & Mogensen, J. Electrochem. Soc., 157(10), B1419 (2010)

20

DTU Energy Conversion, Technical University of Denmark

Sept. 26-27 2012

b b n e e ge



6. Materials & durability — gas purity/Zimpurity

i

Assignments — impurities from different “sources” - estimates only (1000 h test)

A) Sulphur impurities in the gas stream:

In the experiments (see graphs) a total flow of 25 h/l was used for each electrode. How much sulphur did
we lead to the tested cells if there is sulphur impurity of e.g. 100 ppb in the inlet gas? (is 100 ppb a
realistic number?)

B) Si-impurities e.g. from the sealing material: A- Electrolysis of COz R
At the test conditions given the p(Si(OH),) E‘j o ST T E
originating from the relevant glass sealing o= f g‘
is app. 2:10-8 atm (still a flow of 25 h/l was used for each electrode). i:j;j ' / R §

C) Impurities in raw materials: T e
Calculate the total amount (mass) of SiO, in the raw materials in the B-i'zm'vs'so”w P s
half cell (i.e. electrolyte, H, electrode and support layer) based on: S 120 / S ;

é”:ﬁ N

“The cells had a 10—-15 x m thick hydrogen electrode of Ni/YSZ cermet 3 BB :
and were supported by a 300 ¢zm thick Ni/YSZ layer, a 10-15 um thick m ~ a2
YSZ electrolyte, and a 15-20 um thick LSM-YSZ composite oxygen T mafm:u-fw% e

C - Co-slectrolyss of HzO and CO: — Callvaltage .

— inplans volage

electrode. The ratio between Ni and YSZ (ZrO, stabilized with 8 mol %

Y,0,) was 40/60 vol % both for the support layer and the active f . f T s
. ¥ \
electrode layer. The active electrode had an area of 16 cm?Z. % e / SN \ ;
c . ] T —— e
The porosity is app. 30%. The Si content was app. 12 ppm for s g T oo
both Ni and YSZ raw materials” 0 e s e A R
(p(Ni)=8.9 g/cm3, p(YSZ)=5.9 g/cm?3, M(Ni)=58,7 g/mol, pemm——
— P — Figure 2. Cell voltage and corresponding in-plane voltage at the Ni/YSZ
M(YSZ) 123 g/mOI and M(SIOZ) 60 g/mOI) electrode  measured during (A} CO, (850°C, -0.25 Afem?,
B i i A T0% CO,-30% CO), (B) H,0 (B30°C, —0.50 Afem®,
21 DTU Energy Conversion, Technical University of Denmark 50% H,0-50% H,), and (C) co-electrolysis (850°C, -0.25 Alem?,

45% H, ()—4- % C(} 10% H,)
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6. Materials & durability — gas purityZimpurity

E - Electrolysis of HiO

A - Electrolysis of CO;

1200

1178 -
5
CRIEE

[ AR RF--]

gnw- /
fi
3 1S 4

/’ o

1020
1025
1000

C -Co-electrolys s of HzO and CO:z

1000 4

Call voltage imV)
[

—Call volage
——In-plans wol tage

(il
[

s - [}
.

1K)

8

— Gl voltage il
—— Ineplans vollage

o~ -"'"""\-\.\\ I:‘/ ]

! e

oz

az

1]

100 200 300 200 500 600 T00 800 900 1000 1100 1200 1300 1200
|[Elecirolyss Bma {hj

[1N.]
[
.z

1]

0z
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Ref. Ebbesen, Graves, Hauch, Jensen & Mogensen,
J. Electrochem. Soc., 157(10), B1419 (2010)
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Figure 7. (A) Cell voltage measured during CO, electrolysis (850°C,
-0.25 Alem®, T0% CO=30% CO), H,0 electrolysis  (850°C,
-0.25 Afem® and -0.50 Afem®, 50% H,0-50% H.), and during
co-electrolysis ~ of OO0, and H,O  (B50°C, -0235 Ajcm?,
45% CO,—453% H,0-10% H,) with cleaned inlet gases. The increase in
cell voltage during CO, electrolysis after 295 and 363 h of operation was
caused by a sensor break in the oven temperature control causing a lowering
of the cell temperature to 795 and 835°C, respectively. (B) Corresponding
in-plane voltage at the NifYSZ electrode measured during either H,0O elec-
trolysis (B, o) or CO, electrolysis B, .
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6. Materials & durability — gas purityZimpurity

" "N postmortem microscopy...
"

o
A
o

B - Electrolysis of H:O —call woliage s
1275 ——in-plans voltage .
Eww as E t 10
}12&’.“_\ s E
g 1 S ST a2 E
d 1ims e —— g @
1150 an B E"
25 a2 e
i 2 w0 @0 mo e 1m0 a0 0m 10n o0 o 1 i
Elncirobyss fima (i w
A= E_Iec'l'.l'olysis. of CO: ol wolinge
:f?: - p—r ——in-plana voiage ' ‘ ‘
Enw IFF‘MMJ-H‘\\’:’ ‘60 ¥ 4
=l Chail i M b 2r Al Si
= A
= E s
\0
oo 6@“_,(’00 1 6(, —ourm. [*_ Conclusion:
z @\(’(G?}\6\ g"b E Impurities can play a significant
NP 5 04 . -
T e NE - O ¢ role in SOE durability
3 .0 o “‘—“—\\ — f — and to some extend different i
a0 Q — "“——”""rﬂ_ﬂ_ az Compared to SOFC Element | Na Al Si Ni Cu Zr
o maﬁ,:mﬁ,]“ T Metal 1342 36+2 4143 2+1 7+ 1+1
atom%
Ref. Ebbesen, Graves, Hauch, Jensen & Mogensen, Ref. Hauch, Bowen, Kuhn & Mogensen, Electrochem. & Solid
J. Electrochem. Soc., 157(10), B1419 (2010) State Lett., 11(3), B38 (2008)
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9. SOE cells — Other durability and degradation issues

<l
>
Electrolyte/O, electrode interface degr. at high current densities
850° C ,50:50 H,0:H, to the Ni/YSZ electrode and O, to the oxygen electrode
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* 0 mmw oo

il /'..a*""o.s.f. my goss s We'll focus
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Ref. Knibbe, Traulsen, Hauch, Ebbesen & Mogensen, J. Electrochem. Soc., 157(8), B1209, 2010
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Figure 5. Electrode polarization resistance degradation with time for tests A
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Figure 2. Impedance spectra obtained at 850°C with 50050 (H,O:H,) sup-
plied to the NiY5E hydrogen electrode, oxygen suEijed to the LSMYSE
oxygen electrode, and current density of — 1.5 A cm*. Characteristic process
frequency of above given process arc.
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9. SOE — Other durability and degradation issues

i

Electrolyte/O, electrode interface degr. at high current densities

axygen gleetrode
it
J
. Figure 8. Oxygen electrode overview: (a)
1% « | - Test A (—2.0 A cm™) and (b) reference.
. 3 Low magnification SE2 image with higher
magnification inset.

electrolyte

Figure . Electrolyte overview: (a) Test A
(2.0 A em™) inset of intergranular
fracture running along grain boundary and
(b) test C (—1.0 A em™).

Cell with R, increase Cell with R, constant
(-2 A/cm?) (-1 A/cm?)

TEM study of the YSZ

grain boundaries.... —

Ref. Knibbe, Traulsen, Hauch, Ebbesen & Mogensen, J. Electrochem. Soc., 157(8), B1209, 2010
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9. SOE — Other durability and degradation issues DTU
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TEM of YSZ grain boundary near oxygen electrode from cell tested at -2 A/cm? (R, increase)

Testing of similar cells at 1.9 A/cm?2 (FC) do not show similar Rs degr. &
YSZ grain boundary changes (A. Hagen et al., J. Electrochem. Soc)...—
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Fuel electrode side

9. SOE cells — Other durability and degradation issues Ul

ﬂ Electrolyte thickness

Figure 11. Sketch of electromotive potential distribution through electralyte
thickness with the hydrogen electrode to the left and the oxygen electrode to
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electrolysis testing.

Ref. Knibbe, Traulsen, Hauch, Ebbesen & Mogensen, J. Electrochem. Soc., 157(8), B1209, 2010
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9. SOE cells — Summary: Durability & degradation issues DTU

For the hydrogen/steam electrode:
Ni/YSZ advantages:

Well-known, inexpensive electrode material

Ni highly catalytic active for H,O reduction (and for CO, red. as well)
Ni/YSZ disadvantages:

Prone to impurities (Sc-doping could be an alternative option)

Ni evaporation (only relevant at high temp. and high p(H,0))

Ni coarsening (all ceramic based electrode could be an alternative)

For the oxygen electrode and electrolyte/oxygen electrode:
Delamination of the oxygen electrode (dependent on actual electrode/microstructure)
Oxygen formation in YSZ grain boundaries

A couple of review papers:

Sohal et al., J. Fuel Cell Science and Technology, 9(1), 11017 (2012)
Hauch et al., J. Mater. Chem., 18, 2331 (2008)

Knibbe et al., Green, 1(2), 141 (2011)

Laguna-Bercero, J. Power Soruces, 203, 4 (2012)
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10. SOE cells — Where are we heading?

Increased life time under realistic/technological relevant conditions

I.
Alternative electrode materials and cell design
— all ceramic fuel electrodes, Sc-doped electrode, Sc-doped electrolyte,

IT.
MIEC oxygen electrode (demands for barrier layer!)

ITI. Cycling between SOFC and SOEC
— interesting from at technological point of view

IV. Pressurized test

V. Stack testing

Sept. 26-27 2012

33 DTU Energy Conversion, Technical University of Denmark



10. SOE cells — Where are we heading?

i

Stack testing — a couple of examples

-0.5 A/cm? . -0.75 A/cm?

v

»

12800 - Stack voltage

v

< 12600 - L -
c

Stack voltal

(0]
[
(@]
—
(@]
(@]
(@]

I I I
0 200 400 600

Electrolysis time (h)

Durability during co-electrolysis; 10-cell stack at 850 °C with 45 % H,0 - 45 % CO, - 10 % H,
supplied to the Ni-YSZ electrode, dry O, was supplied to the LSM-YSZ electrode

Ref. Ebbesen, Hggh, Agersted, Nielsen & Mogensen, Int. J. Hydrogen Energy, 36, 7363 (2011)
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10. SOE cells — Where are we heading?

1=

Stack testing — a couple of examples

Also other groups working with SOEC stack testing e.g. Brisse/Schefold at CEA, and

O’Brien/Stoots at INL (see graph below from ”“Status of the INL High-Temperature Electrolysis
Research Program - Experimental and Modeling”, 4th Information Exchange Meeting on the Nuclear
Production of Hydrogen, 2009)

800 °C, steam electrolysis, -0.15 A/cm? (as far as I can read...)

24
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ASE E':, L6 !
08 y *-a"g . .
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¥
0.6 12
OOV chec
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Figure 9. (a) Area-specific resistance of a button cell as a function of time for 1100-hour test; (b) Area-specific resistance of
a 25-cell stack as a function of time for a 1000-hour test.
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10. SOE cells — Where are we heading?

R
. R
Pressurized test a
Production of synthetic hydrocarbon fuels are T
. a
normally operated at pressures exceeding 40 bars! a0
©
=
o
[ 4
- 0 T :
-1 - 0.5 u 0.5 1 1.5
Mass Flow Controller Current density / A cm?
o aa e b
A0, 4 soch{- b
—— ounl {be @ 2
‘\‘ Autoclave f;"‘ E;.
Pressure Controller Wacuum Pump _E
T
(]
Table 1 — OCV and ASR measured at 750 °C at various pressures and Ni/YSZ-electrode gas compositions. 0 0
Pressure (bar) 50% Hj + 50% H,0 80% Hj + 20% H,0 0 0.5 1 15 3
OCV (V) ASR (2 cm?) oCV (V) ASR (Q cm?) Current density / A cm?
Theory Measured -V Theory Measured i—V Impedance
04 0.972 0.961 0.59 1.033 1.021 0.62 0.64
1 0.992 0.969 0.52 1.053 1.037 0.55 0.56
3 1.016 0.996 0.47 1.077 1.062 0.49 0.53
10 1.043 1.011 0.42 1.104 1.084 0.40

Ref. Jensen, Sun, Ebbesen, Knibbe & Mogensen, Int. J. Hydrogen Energy, 35(18), 9544 (2010) + SOC references in this.
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11. Summing up using Learning objectives

i

Learning objectives — 5 minutes — only pen and paper:

1.

38

Explain/sketch qualitatively how electrolysis (potentially) can become
an important player in a future energy grid?

. Explain the basic operation principle for steam electrolysis, CO,

electrolysis, co-electrolysis

. List typical electrode materials incl. requirements and operation

conditions

. Give examples of SOEC degradation issues and explain why some of

these can be somewhat different from what can be observed for similar
SOFCs (based on material properties, test conditions etc.)

DTU Energy Conversion, Technical University of Denmark Sept. 26-27 2012



Evaluation — SOE part /7 2 lectures

i

Maintain

Improve

Muddy point

New insight
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EXTRA SLIDES
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10. SOE cells — Durability

o
P
. S
Durability
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Single cell, steam electrolysis, Ni/YSZ-YSZ-CGO-LSCF/CGO cell.

Ref. Shefold, Brisse & Tietz, J. Electrochem. Soc., 159 (2), A137 (2012)
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