

Introduction to Fuel Cell Modelling

Andrei Kulikovsky

Research Centre Juelich Institute of Energy and Climate Research Juelich, 52425 Germany

2nd European Summer School, Iraklion, September, 2012

Outline

- Introduction: The fuel cell effect
- Potentials and Butler—Volmer equation
- Cathode catalyst layer (CCL) transient model
- Going to the cell level: Oxygen transport in the GDL
- Oxygen consumption in the channel
- Heat flux from the catalyst layer
- CCL model and impedance spectroscopy
- How much is poor proton transport in the CCL?
- Other limiting cases / solutions
- What happens to the cathode channel flow
- Conclusions

What is modeling? Consider classic pendulum

 $\vec{F}_{\rm rad}$

Classic pendulum: Omega

Phi is periodic, the equation is linear, make Fourier transform! $\frac{\partial^2 \varphi}{\partial t^2} + \frac{g}{l} \varphi = 0; \quad \varphi(t) = \hat{\varphi}(\omega) \exp(i\omega t)$ $(i\omega)(i\omega)\hat{\varphi} \exp(i\omega t) + \frac{g}{l}\hat{\varphi} \exp(i\omega t) = 0$

That is what we are going to do this evening

1838: The birth of the fuel cell

Christian Friedrich Schoenbein (October 18, 1799 - August 29, 1868) Photo: Foto-Atelier Braun, Metzingen (Naturhistorisches Museum Basel)

Sir William Robert Grove (July 11, 1811 - August 1, 1896) Photo: The Bridgeman Art Library, London (The Royal Institution, London)

In spite of 174 years of research, we don't see fuel cells in a supermarket. The reason is tremendous complexity of the problem.

Institute of Energy and Climate Research (IEK-3)

The fuel cell effect

PEMFC: How it works

Direct methanol and solid oxide FCs

Real PEM fuel cell schematic

The problem

The models we will discuss

Structural Picture of CCL

Basic solvable models

Understanding CL, cell and stack function

What is overpotential?

$$\eta = \varphi_m - \varphi_c - E^{eq}$$

Electrolyte potential minus electrode potential minus equilibrium potential

At equilibrium the capacitor is charged and

$$\varphi_c = -E^{eq}, \ \varphi_m = 0, \ \eta = 0$$

In FC modeling, it is convenient to forget about E^{eq} for a moment, and to calculate the voltage loss first.

Two potentials in the catalyst layer

$$O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$$

phi_c drives electrons, while phi_m drives protons, overpotential is phi_m - phi_c (here we forget about OCV). The total voltage loss is eta_0 at the membrane interface. CL is a mixture of electrolyte and "electrode" (carbon phase). Each potential forms a porous cluster. This is modeled as a continuous media with two potentials, phi_m and phi_c.

Total voltage loss in a fuel cell

$$V_{loss} = \eta_0^a + \eta_0^c + \eta_m + R_c j$$

Once V_{loss} is calculated, the cell voltage is

$$V_{cell}\,=\,V_{oc}\,-\,V_{loss}$$

What happens to this figure when the cell current decreases? The point V_{loss} goes down. When j=0, all overpotentials are zero and

$$V_{cell} = V_{oc}$$

PEMFC

Anodic voltage loss is very small, as HOR kinetics are excellent. In PEMFCs, all the problems are on the cathode side.

ORR chain

(1)
$$O_2 \rightarrow O_{ad} + O_{ad}$$

(2) $O_2 + e^- \rightarrow O_{ad}^-$
(3) $O_{ad}^- + H^+ \rightarrow HO_{ad}$
(4) $HO_{ad} + H^+ + e^- \rightarrow H_2O$

$$\mathrm{O_2}\,+\,4\mathrm{H^+}\,+\,4\mathrm{e^-}\,\rightarrow\,2\mathrm{H_2O}$$

Analysis of rate constants shows that

$$k_4 \ll \max\{k_1, k_2, k_3\}$$

Eq.(4) is *the rate-determining step;* this is a single-electron transfer. Now we say that we will ignore all the reaction steps but the RDS, and consider an equivalent single-step 4-electron transfer, in which 3 electrons are transferred "for free".

Butler-Volmer equation I

The rate of equivalent single-step reaction is

$$Q_f = \left(\frac{c_{ox}}{c_{ref}}\right) k_f(\eta)$$

The rate constant depends on overpotential. This is what electrochemistry is about.

Eta lowers the barrier

$$k_{f}(\eta) = i_{ref} \exp\left(-\frac{E_{act}}{RT}\right) = i_{ref} \exp\left(-\frac{E_{act}^{eq} - \alpha F\eta}{RT}\right)$$
$$k_{f}(\eta) = i_{*} \exp\left(\frac{\alpha F\eta}{RT}\right), \text{ where } i_{*} = i_{ref} \exp\left(-\frac{E_{act}^{eq}}{RT}\right)$$

Exchange current density

Butler-Volmer equation II

$$Q_f = i_* \left(\frac{c_{ox}}{c_{ref}} \right) \exp \left(\frac{\alpha F \eta}{RT} \right)$$

$$2H_2O \rightarrow O_2 + 4H^+ + 4e^-$$

 $Q_r = i_* \left(\frac{c_w}{c_{rof}^w}\right)^2 \exp\left(-\frac{(1-\alpha)F\eta}{RT}\right)$

Reverse reaction of water electrolysis. **RDS also is a single-electron transfer.**

 $Q = Q_f - Q_r$

Total rate

Butler-Volmer equation III

$$\begin{split} Q &= i_* \left[\left(\frac{c_{ox}}{c_{ref}} \right) \exp\left(\frac{\alpha F \eta}{RT} \right) - \left(\frac{c_w}{c_{ref}^w} \right)^2 \exp\left(-\frac{(1-\alpha)F\eta}{RT} \right) \right] \\ Q &\simeq i_* \left(\frac{c_{ox}}{c_{ref}} \right) \left[\exp\left(\frac{\alpha F \eta}{RT} \right) - \exp\left(-\frac{(1-\alpha)F\eta}{RT} \right) \right] \\ Q &\simeq 2i_* \left(\frac{c_{ox}}{c_{ref}} \right) \sinh\left(\frac{\eta}{b} \right), \\ \text{where} \quad b = \frac{RT}{\alpha F} \\ \text{Tafel slope} \\ \end{split}$$

Generic catalyst layer

Polarization curve $\eta_0(j_0)$? The shapes?

A model for the CL performance

DL charging

Butler-Volmer ORR rate

$$\begin{split} C_{dl} & \frac{\partial \eta}{\partial t} + \frac{\partial j}{\partial x} = -2i_* \left(\frac{c}{c_{ref}}\right) \sinh\left(\frac{\eta}{b}\right) \\ j &= -\sigma_t \frac{\partial \eta}{\partial x} \\ \frac{\partial c}{\partial t} - D \frac{\partial^2 c}{\partial x^2} = -\frac{2i_*}{4F} \left(\frac{c}{c_{ref}}\right) \sinh\left(\frac{\eta}{b}\right) \end{split}$$

Charge conservation

Ohm's law

Oxygen mass transport

The steady-state system

Institute of Energy and Climate Research (IEK-3)

How to nondimensionalize equations

$$\begin{split} &\frac{\partial j}{\partial x} = -2i_* \left(\frac{c}{c_h^0}\right) \sinh\left(\frac{\eta}{b}\right) \\ &\left(\frac{j_*}{2i_*l_t}\right) \frac{\partial (j/j_*)}{\partial (x/l_t)} = -c \sinh\left(\eta\right) \\ &\left(\frac{j_*}{2i_*l_t}\right) \frac{\partial j}{\partial x} = -c \sinh\left(\eta\right) \end{split}$$

$$\varepsilon^2 \frac{\partial j}{\partial x} = -c \sinh\left(\eta\right)$$

Dimensionless terms have this color

$$j_* = rac{\sigma b}{l_t}, \ c = rac{c}{c_h^0}, \ \eta = rac{\eta}{b}$$

With these variables, our equation is controlled by a single parameter epsilon.

Dimensionless steady-state model

Equations

$$\varepsilon^2 \frac{\partial j}{\partial x} = -c \sinh \eta$$

$$j = -\frac{\partial \eta}{\partial x}$$

$$D\frac{\partial c}{\partial x} \neq j_0 - j$$

In spite of apparent model simplicity, a full analytical solution still is unknown

Parameters

$$= \sqrt{\frac{\sigma_t b}{2i_* l_t^2}}$$

 $D = \frac{4FDc_{ref}}{\sigma_t b}$ $j = \frac{jl_t}{\sigma_t b}$

 \mathcal{E}

Newman's reaction penetration depth

Cell current density

Institute of Energy and Climate Research (IEK-3)

Large ionic conductivity, fast oxygen transport

Tafel equation

for
$$x \ge 2$$
, $\operatorname{arcsinh}(x) \simeq \ln(2x)$
 $\eta_0 = b \operatorname{arcsinh}\left(\frac{j_0}{2i_*l_tc_1/c_h^0}\right)$
 $\simeq b \ln\left(\frac{j_0}{i_*l_tc_1/c_h^0}\right)$

Ideal ORR electrode (Tafel mode)

Overpotential and reaction rate are constant through the CL thickness. Optimal catalyst utilization.

How to account for the oxygen transport in the GDL?

Limiting current density

$$\eta_0 = \ln\left(2\varepsilon^2 j_0\right) - \ln\left(c_h - \frac{j_0}{j_{\rm lim}}\right)$$

When the cell current reaches jlim, no oxygen left in the catalyst layer.

The effect of oxygen stoichiometry

$$\begin{split} v^{0} \frac{\partial c}{\partial z} &= -\frac{j_{0}}{4Fh} \Longrightarrow \lambda J \frac{\partial c}{\partial z} = -j_{0} \end{split} \text{ where } \lambda = \frac{4Fhv^{0}c_{h}^{0}}{LJ} \\ \text{Oxygen stoichiometry} \\ \eta_{0} &= \ln\left(2\varepsilon^{2}j_{0}\right) - \ln\left(c_{h} - \frac{j_{0}}{j_{\lim}}\right) + \ln c_{h} - \ln c_{h} \\ \eta_{0} &= \ln\left(2\varepsilon^{2}\frac{j_{0}}{c_{h}}\right) - \ln\left(1 - \frac{j_{0}}{j_{\lim}c_{h}}\right) \end{split}$$

j_0 and c_h depend on coordinate z. However, their ratio j_0/c_h must be constant:

$j_0 = \alpha c_h$

The effect of oxygen stoichiometry

We have a first—order equation and two boundary conditions. This gives us alpha:

$$\frac{j_0}{c_h} = -\lambda \ln \left(1 - \frac{1}{\lambda} \right) J \quad \Box \Rightarrow \eta_0 = \ln \left(2\varepsilon^2 \frac{j_0}{c_h} \right) - \ln \left(1 - \frac{j_0}{j_{\lim}c_h} \right)$$

Institute of Energy and Climate Research (IEK-3)

Polarization curve with the stoichiometry effect

Institute of Energy and Climate Research (IEK-3)

The shapes along the channel

Heat flux from the catalyst layer I

In the general case the problem is tricky, as it includes eta and R_{ORR}. However if we "think a little" (Einstein), it became clear that in the ideal—transport case

$$T \simeq T_1, \ \eta \simeq \eta_0, \ j = j_0 \left(1 - \frac{x}{l_t} \right)$$
$$R_{ORR} = -\frac{\partial j}{\partial x} = \frac{j_0}{l_t}$$

Institute of Energy and Climate Research (IEK-3)

Heat flux from the catalyst layer II

$$\begin{split} -\lambda \frac{\partial^2 T}{\partial x^2} &= \left(\frac{T_1 \Delta S}{nF} + \eta_0\right) \frac{j_0}{l_t} + \frac{j_0^2}{\sigma_t} \left(1 - \frac{x}{l_t}\right)^2 \\ &\frac{\partial T}{\partial x} \bigg|_0 = 0, \ T(l_t) = T_1 \qquad \text{By definition} \ q = -\lambda \frac{\partial T}{\partial x} \bigg|_{l_t} \\ & \left(q = \left(\frac{T_1 \Delta S}{nF} + \eta_0\right) j_0 + \frac{j_0^2 l_t}{3\sigma_t}\right) \qquad \text{Where} \quad \left(\eta_0 = b \ln\left(\frac{j_0}{l_t}\right)\right) \\ & \text{Tafel equation} \end{split}$$

Heat "pie" for the ORR in PEMFC

Parallel RC-circuit in a "black box"

Can we understand what is inside?

$$\begin{split} i_{R} &= \frac{\varphi}{R} \\ i_{C} &= \frac{\partial q}{\partial t} = C \frac{\partial \varphi}{\partial t} \\ i &= \frac{\varphi}{R} + C \frac{\partial \varphi}{\partial t} \end{split}$$

$$\varphi = \varphi(\omega) \exp(i\omega t)$$

$$i = i(\omega) \exp(i\omega t)$$

$$i = \frac{\varphi}{R} + i\omega C\varphi = \left(\frac{1}{R} + i\omega C\right)\varphi$$

$$Z = \frac{\varphi}{i} \quad \text{Impedance definition}$$

$$\frac{1}{Z} = \frac{1}{R} + i\omega C$$

$$Z = \frac{R}{1 + (\omega R C)^2} - i\frac{\omega R^2 C}{1 + (\omega R C)^2}$$

Institute of Energy and Climate Research (IEK-3)

Nyquist plot

Some comments

Our simple RC-system is linear, while real systems are not, and we must apply a **small—amplitude** disturbance to get a linear response.

In the case of nonlinear system, the right intercept is a **differential** static resistivity.

Impedance spectroscopy

Impedance spectroscopy of fuel cells

Impedance of the CCL with ideal O2 transport

$$\begin{split} C_{dl} \frac{\partial \eta}{\partial t} + \frac{\partial j}{\partial x} &= -2i_* \left(\frac{c}{c_{ref}}\right) \sinh\left(\frac{\eta}{b}\right) \\ j &= -\sigma_t \frac{\partial \eta}{\partial x} \end{split}$$

Charge conservation

Ohm's law

$$\frac{\partial \eta}{\partial t} - \varepsilon^2 \frac{\partial^2 \eta}{\partial x^2} = -c_1 \sinh \eta$$

Nonlinear equation

$$\eta = \eta^0 + \eta^1, \ \eta^1 \ll 1$$

The disturbance is small and harmonic; we will linearize equation and go to the complex plane.

Linearization

Fourier transform

$$\frac{\partial \eta^1}{\partial t} - \varepsilon^2 \frac{\partial^2 \eta^1}{\partial x^2} = -c_1 \cosh\left(\eta^0\right) \eta^1 \longleftrightarrow \quad \eta^1(x,t) = \eta^1(x,\omega) \exp(i\omega t)$$
Fourier transform

$$\varepsilon^2 \frac{\partial^2 \eta^1}{\partial x^2} = c_1 \cosh\left(\eta^0\right) \eta^1 + i\omega \eta^1$$

We are in the (x,omega) space

From the steady—state analysis we know that $c_1 \cosh(\eta^0) \simeq \varepsilon^2 j_0$ (Tafel at small current) $\varepsilon^2 \frac{\partial^2 \eta^1}{\partial r^2} = \left(\varepsilon^2 j_0 + i\omega\right) \eta^1, \quad \eta^1(0) = \eta_0^1,$ $\frac{\partial \eta^{1}}{\partial x}$ = 0 Applied disturbance Zero proton current

Solution: Impedance of the CCL at small current

Impedance is

$$Z = \frac{\eta^1}{j^1} \bigg|_0 = -\frac{\eta^1}{\partial \eta^1 / \partial x} \bigg|_0$$

At x=0 (membrane interface)

Solving for eta^1 and calculating Z we get

$$Z = -\frac{1}{\varphi \tan \varphi}$$
, where $\varphi = \sqrt{-j_0 - i\frac{\omega}{\varepsilon^2}}$

Separating real and imaginary parts, we obtain a Nyquist plot:

Nyquist plot and the points of interest

Experiment: Pure oxygen at high flow rate

R. Makharia, M. F. Mathias, D. R. Baker, J. Electrochem. Soc. **152** (2005) A970

$$\begin{split} b &= 0.045 \text{ V} \quad \text{(None)} \\ C_{dl} &= 12.4 \text{ Fcm}^{-3} \text{ (15.3)} \\ \sigma_t &= 0.011 \text{ Scm}^{-1} \text{ (same)} \\ \end{split}$$

$$\begin{split} \textbf{The model works if} \\ \sqrt{2i_*\sigma_t b} \ll j_0 \ll \frac{\sigma_t b}{l_t} \\ 10 &\leq j_0 \leq 100 \text{ mA cm}^{-2} \end{split}$$

A.A.Kulikovsky, M.Eikerling. J. Electroanal. Chem., (2012, under review)

Catalyst layer with poor ionic (proton) transport I

Direct substitution of Ohm's law into charge conservation leads to

$$\varepsilon^2 \frac{\partial^2 \eta}{\partial x^2} = c \sinh \eta$$

Cannot be solved, unless eta is small

CL with poor proton transport II

In PEMFCs epsilon >>1. Further, c_1<1 and we may expect that the unity under the square root can be neglected. This gives

$$\frac{\partial^2 j}{\partial x^2} + j \frac{\partial j}{\partial x} = 0$$

Epsilon disappears.

BC:
$$j(0) = j_0, \ j(1) = 0$$

Institute of Energy and Climate Research (IEK-3)

Solution

Bas-diffusion layer Membrane Catalyst layer 1 x/l_t

 $j = \beta \tan\left(\frac{\beta}{2}(1-x)\right)$

Great, we have the shape of current. OK, but what is beta? We set x=0

Beta

$$\begin{split} j_0 &= \beta \tan \left(\frac{\beta}{2} \right) & \text{Can we solve it? Yes, we can!} \\ \text{For small current, beta must be small, } & \tan(a) \simeq a & \text{and } j_0 \simeq \frac{\beta^2}{2} \\ \beta &= \sqrt{2 j_0}, \quad j_0 \ll 1 \\ \text{For large current, beta tends to pi and } & \tan(a) \simeq \frac{1}{(\pi / 2) - a} & \text{(use I)} \\ \text{this and } & \frac{1}{(\pi / 2) - a} & \text{this and } \\ \end{array}$$

use Maple to find his asymptotic)

$$\beta = \frac{\pi j_0}{2 + j_0}, \quad j_0 \gg 1$$

Institute of Energy and Climate Research (IEK-3)

Beta II

Institute of Energy and Climate Research (IEK-3)

Return to our solutions

$$j = \beta \tan\left(\frac{\beta}{2}(1-x)\right)$$
$$\eta = \operatorname{arcsinh}\left(\frac{\varepsilon^2\left(\beta^2 + j^2\right)}{2c_1}\right)$$

Solve for eta $\varepsilon^2 \frac{\partial j}{\partial x} = -c_1 \sinh \eta$

Beta is a function of j_0 only. Thus, if we fix the cell current j_0 , the shape j(x) does not depend on any other parameters. However, eta(x) "feels" epsilon and oxygen concentration c_1.

The shapes

Ideal ORR electrode

Reaction runs close to the membrane, where protons are "cheaper". Nonuniform reaction is costly in terms of potential. How much is this regime?

Polarization curve

Tafel slope doubling

$$\begin{split} \eta_0 &= \operatorname{arcsinh} \left(\frac{\varepsilon^2 (\beta^2 + j_0^2)}{2c_1} \right) \\ \eta_0 &= \operatorname{arcsinh} \left(\frac{\varepsilon^2 j_0^2}{2c_1} \right), \quad j_0 \gg 1 \\ \eta_0 &= \ln \left(\frac{\varepsilon^2 j_0^2}{c_1} \right) = 2 \ln \left(\frac{\varepsilon j_0}{\sqrt{c_1}} \right) \\ \eta_0 &= 2 b \ln \left(\frac{j_0}{\sqrt{2i_* \sigma_t b c_1 / c_{ref}}} \right) \end{split}$$

No CL thickness here; internal scale arises (the 3-rd lecture)

For large j_0, beta tends to pi and it can be neglected.

For large x
$$\operatorname{arcsinh}(x) \simeq \ln(2x)$$

How to account for the oxygen transport in the GDL?

$$\eta_0 = \operatorname{arcsinh}\left(\frac{\varepsilon^2(\beta^2 + j_0^2)}{2c_1}\right) \approx \ln\left(\frac{\varepsilon^2(\beta^2 + j_0^2)}{c_1}\right)$$

Linear diffusion in the GDL gives $(c_1) = 1 - \frac{j_0}{j_{\lim}}$

$$\eta_0 = \ln\left(\varepsilon^2(\beta^2 + j_0^2)\right) - \ln\left(1 - \frac{j_0}{j_{\text{lim}}}\right)$$

ORR activation + proton transport O2 transport in the GDL

Fitting the experiment

$$\begin{split} V_{cell} &= V_{oc} - \ln \left(\varepsilon^2 (\beta^2 + j_0^2) \right) \\ &+ \ln \left(1 - \frac{j_0}{j_{\lim}} \right) \\ &- R j_0 \end{split}$$

Ideal oxygen transport in the CCL, large oxygen stoichiometry

Parameters are reasonable, but unreliable. The curves cross the "black line", beyond which the oxygen transport cannot be ignored.

Impedance is much better alternative.

CCL + GDL + channel flow

$\begin{array}{ll} \text{activation} & \text{transport} \\ \eta_0 = 2b \ln \left(\frac{2\lambda \varphi_\lambda J}{j_{\sigma*}} \right) + b \ln \left(1 - \frac{f_\lambda J}{j_{\lim}^0} \right) \end{array}$

Poor proton, ideal oxygen transport in the CCL

Poor oxygen, ideal proton transport in the CCL

Here

$$f_{\lambda} = -\lambda \ln \left(1 - \frac{1}{\lambda} \right), \ \varphi_{\lambda} = 1 - \sqrt{1 - \frac{1}{\lambda}}$$

Poor O2 transport in the CCL doubles the cost of O2 transport in the GDL!

Flow in the cathode channel I

$$\begin{split} \nabla \cdot (\rho \mathbf{v}) &= 0 \\ \int_{V} \nabla \cdot (\rho \mathbf{v}) &= \int_{S} \rho v_{n} dS \quad \text{Gauss theorem} \\ \left[(\rho v_{z})_{z+dz} - (\rho v_{z})_{z} \right] hw - (\rho v_{x})wdz &= 0 \\ \\ \frac{\partial \left(\rho v_{z} \right)}{\partial z} &= \frac{\rho v_{x}}{h} \end{split} \quad \begin{aligned} \text{Variation (divergence) of flux along the z-axis is due to the flux along the x-axis. Note that the x-flux is divided by the channel height h. \end{aligned}$$

Now we have to collect all the x-fluxes

equation

Mass conservation: Solution

Subsonic flow is incompressible

$$\rho^0 \frac{\partial v_z}{\partial z} = \frac{j_0(z)}{4Fh} \left(2(1+2\alpha_w)M_w - M_{ox} \right) \quad \text{(*)}$$

OK, but the local current changes along the channel. We know solution for v_z=const; let's take it as a zero-order approximation:

$$j_0(z) = -J\lambda \ln \left(1 - \frac{1}{\lambda}\right) \left(1 - \frac{1}{\lambda}\right)^{z/I}$$

We insert it into Eq.(*) and solve the resulting equation with the boundary condition $v(0)=v^{0}$:

Solution for the flow velocity

What happens with the flow?

The guys on the front must run faster to keep pressure behind them constant. The flow accelerates to preserve incompressibility.

Conclusions

- Modeling is the only way to understand what is going on in complex systems
- Modeling is a very general principle of thinking. To predict, you always need a model (of a phenomenon, person, situation etc.)
- Always start with the simplest model
- Go ahead step-by-step
- Never change more than one parameter at a time
- Light bulb was invented without modeling. Why?