Introduction to Basic Electrochemistry for Fuel Cells and Electrolysis

Claude LAMY, Professor

Institut Européen des Membranes,
CNRS - GDR n°3339 (PACS),
University of Montpellier 2,
2 Place Eugène Bataillon, 34095 Montpellier, France,
E-mail: claude.lamy@iemm.univ-montp2.fr
Introduction
♦ Thermodynamics and theoretical energy efficiency
♦ Reaction mechanisms and kinetics limitations

The Polymer Electrolyte Fuel Cell
♦ Principle of a Polymer Electrolyte Fuel Cell
♦ Cell components (membrane, catalysts, etc.)
♦ Survey of various applications of PEFC

The Direct Methanol Fuel Cell
♦ Reaction mechanisms and kinetics limitations
♦ The fuel crossover problem

Conclusions
The Hydrogen/Oxygen Fuel Cell

\[H_2 + \frac{1}{2} O_2 \rightarrow H_2O + \text{electricity (+ heat)} \]

with \(\Delta G^\circ_r = -237 \text{ kJ/mole} \); \(\Delta H^\circ_r = -286 \text{ kJ/mole} \)

It looks like the reverse of water electrolysis:

\[H_2O + \text{electricity} \rightarrow H_2 + \frac{1}{2} O_2 \]

Electrical Energy:

\[W_e = -\Delta G^\circ \approx 118 \text{ MJ/kg} \approx 33 \text{ kWh/kg} \]

Standard e.m.f.: \(E^\circ = -\Delta G/nF = 1.229 \text{ V} \)

Theoretical efficiency: \(\epsilon = \Delta G/\Delta H = 83\% \ (25^\circ C) \)

C.F. Schönbein, W.R. Grove, Philosophical Magazine, (1839)

1801: Discovery of the Volta Cell
1839: Birth of Georges Leclanché
1859: Gaston Planté discovered the Pb/PbO\(_2\) battery
1867: Invention of the Leclanché cell
Practical energy efficiency of water electrolysis and fuel cells

\[
\begin{align*}
\text{Water Electrolysis} & : \\
H_2 + 2 \text{H}^+ & \rightarrow \text{H}_2\text{O} + \text{O}_2 \\
E_{\text{electrolysis}} & = 2.1 \text{ V} \\
E_{\text{FC}} & = 0.7 \text{ V} \\
2 \text{H}^+ & \rightarrow \text{H}_2 \\
\text{H}_2\text{O} & \rightarrow \text{H}_2 + \text{O}_2
\end{align*}
\]

Electrolysis efficiency
\[
\frac{1.23}{2.1} \approx 59\%
\]

Fuel Cell efficiency
\[
\frac{0.7}{1.23} \approx 57\%
\]

Overall efficiency
\[
(\frac{1.23}{2.1})(\frac{0.7}{1.23}) = \frac{0.7}{2.1} \approx 33\%
\]
How does work a fuel cell: it is an electrochemical device which transforms directly the combustion energy of a fuel (-ΔG) into electricity (and heat).

Comparison with other electric source and Internal Combustion Engine (ICE)

Energetic Efficiency

Electrochemical Source
\[\varepsilon = \frac{W_e}{-\Delta H} = \frac{\Delta G}{\Delta H} \]
\[\approx 80 \text{ to } 97 \% \]
Practical efficiency ≈ 40 to 60 %

Thermal Engine (Carnot)
\[\varepsilon_r = \frac{W_m}{-\Delta H} = \frac{(Q_1 - Q_2)}{Q_1} = 1 - \frac{Q_2}{Q_1} = 1 - \frac{T_2}{T_1} \]
e.g. \[\varepsilon = 1 - \frac{T_2}{T_1} \approx 30 \text{ to } 45 \% \]
Practical efficiency ≈ 18 to 30 %
Thermodynamic Relations

A key variable in Electrochemistry: the Electrochemical Potential

- **Definition**
- **Thermodynamic relations**
 - Equilibrium between 2 charged phases α and β
 - Nernst potential
 - The Standard Hydrogen Electrode (SHE)

- **Theoretical energy efficiency**
 - Under standard conditions ($j = 0$)
 - As a function of temperature
Definition of the Electrochemical potential

Consider a charged phase α containing different species (i) : solvent molecules (H_2O), chemical species A_i of charge z_i ($z_i = 0$ for a neutral species, $z_i > 0$ for a cation, < 0 for an anion).

The **Electrochemical Potential** of one mole of species (i) in phase α is the total work to bring species (i) from a standard reference point (with no interaction), usually Infinity (∞), to the bulk phase α.

$$\Psi = \sum_i \frac{q_i}{4\pi \varepsilon_0 \varepsilon_r r_i}$$

$$\chi = \sum_i \frac{N_i \bar{p}_i \bar{r}_i}{4\pi \varepsilon_0 \varepsilon_r r_i^3}$$

$$\bar{\mu}_i^\alpha = (\partial \Delta G^\alpha / \partial N_i)_{T,P,N_j} = \mu_i^\alpha + z_i F \Phi^\alpha \quad \text{with} \quad \Phi^\alpha = \Psi^\alpha + \chi^\alpha$$

μ_i^α = chemical potential; F = Faraday = $n e_o = 96485$ C

Φ = inner potential; Ψ = outer potential; χ = surface potential
Equilibrium at the electrode-electrolyte Interface

Inner potential Φ

$E = \Phi^M - \Phi^S$

$\bar{\mu}^\alpha = \bar{\mu}^\beta$ \hspace{1cm} i.e. $\Delta \bar{\mu}_i = \bar{\mu}_i^\alpha - \bar{\mu}_i^\beta = 0$

$\bar{\mu}_i^M = \bar{\mu}_i^M + z_i F \Phi^M = \bar{\mu}_i^S = \bar{\mu}_i^S + z_i F \Phi^S$

$E = \Phi^M - \Phi^S = (\mu_i^S - \mu_i^M) / z_i F$

E: electrode potential; $[A_i]$: activity

$A_i^{z_A} + n_i e^- \leftrightarrow B_i^{z_B}$ with $\mu_i = \mu_i^o + RT \ln[A_i]$ and $n_i = z_i^A - z_i^B$

$\bar{\mu}_A^S + n_i \bar{\mu}_e = \bar{\mu}_B^S \rightarrow E = \Phi^M - \Phi^S = (\mu_A^S - \mu_B^S + \mu_e^M)/nF$

$E = (\mu_A^o - \mu_B^o)/nF + RT/nF \ln([A]/[B]) + \mu_e^M/F$

$E = E^o_{A/B} + RT/nF \ln([A]/[B]) + \mu_e^M/F$

which looks like a Nernst law, but E is not directly measurable
Only the potential difference between 2 electrodes, the potential of each is defined by 2 electrochemical systems in equilibrium, is measurable:

\[
A_1^{Z_{A1}} + n_1 \, e^- \leftrightarrow B_1^{Z_{B1}} \quad \text{and} \quad A_2^{Z_{A2}} + n_2 \, e^- \leftrightarrow B_2^{Z_{B2}}
\]

\[
E_{eq} = E_2 - E_1 = E^o_{A2/B2} - E^o_{A1/B1} + \frac{RT}{nF} \ln([A_2]/[B_1]/[B_2]/[A_1])
\]

since the electron chemical potential \(\mu_e^M/F \) cancels out with the same metal (Cu) as connecting leads at the extremity of the measuring device.

This corresponds to the overall chemical reaction:

\[
a_2 \, A_2^{Z_{A2}} + b_1 \, B_1^{Z_{B1}} \leftrightarrow a_1 \, A_1^{Z_{A1}} + b_2 \, B_2^{Z_{B2}}
\]

with equilibrium constant \(K_e = ([A_1]^{a1}[B_2]^{b2}/[A_2]^{a2}[B_1]^{b1}) = \exp(-\Delta G_r/RT) \)

where the reaction free energy is related to the chemical potentials:

\[
\Delta G_r = \sum_j \Delta N_j \mu_j - \sum_i \Delta N_i \mu_i \quad (j = \text{products}, \ i = \text{reactants})
\]

so that:

\[
E_{eq} = E_2 - E_1 = -\Delta G_r / nF \quad \text{or} \quad \Delta G_r + nF \, E_{eq} = \Delta \overline{G}_r = 0
\]
Important remarks: Activity and Fugacity

- For an electrolytic solution the activity \([A_i]\) of species (i) is related to its concentration \(C_i = N_i/V\) (\(N_i\) moles in solution of volume \(V\)) by:

 \[[A_i] = \gamma_i C_i \text{ where } \gamma_i \text{ is the activity coefficient} \]
 \(\gamma_i \rightarrow 0 \text{ if } C_i \rightarrow 0 \sim \text{ideal solution} \)

- For a gaseous phase the fugacity of a gaseous species (i) is related to its partial pressure through its chemical potential \(\mu_i = \mu_i^o + RT \ln (f_i/P_o)\) where \(P_o\) is the pressure of a reference state (\(P_o = 1\) bar usually) and \(f_i\) is proportional to the partial pressure \(p_i\), i.e. \(f_i = \gamma_i \ p_i\) with an activity coefficient \(\gamma_i \rightarrow 0 \text{ if } p_i \rightarrow 0 \sim \text{ideal gas}\)

- In the following, activity and fugacity will be assimilated to concentration and partial pressure, respectively.
Thermodynamic Relations

$\Delta G < 0$ for spontaneous reaction; $E_{\text{cell}} = E_c - E_a$

$\Delta G = -S\Delta T + V\Delta P + \sum \mu_i \Delta N_i$ with $\mu_i = \mu_i^o + RT \ln[A_i]$

Then: $W_e = -nF E_{\text{cell}} = \Delta F_T + P \Delta V = \Delta G_{T,P} = \Delta H - T \Delta S$

For an half cell whose electrode potential is controlled by an electrochemical reaction:

$A_i + n_i e^- \longleftrightarrow B_i$ with $\mu_i = \mu_i^o + RT \ln[A_i]$

$E_{\text{eq}} = E_{A/B}^o + (RT/nF) \ln ([A_i] / [B_i])$ with

$E_{A/B}^o = (\mu_A^o - \mu_B^o) / nF = -\Delta G^o/nF$ (standard state)

one may define a standard Redox potential $E_{A/B}^o$ in the potential scale of the Standard Hydrogen Electrode (SHE).

The Redox potential of all electrochemical systems can thus be classified in the SHE scale (electrochemical series).
Reference electrode: the Standard Hydrogen Electrode (SHE)

\[2 \text{H}^+ + 2 \text{e}^- \leftrightarrow \text{H}_2 \quad \text{Pt/H}_2 \text{ (p=1 bar)} / ([\text{H}^+] = 1), \ 25^\circ \text{C} \]

\[\text{A}_i + n_i \text{e}^- \leftrightarrow \text{B}_i \]

\[\text{A}_i + n_i/2 \text{H}_2 \leftrightarrow \text{B}_i + n_i \text{H}^+ \quad \text{with } \Delta G_r < 0 \text{ or } > 0 \]

\[\Delta G_r = \sum_i \Delta N_i \mu_i - \sum_j \Delta N_j \mu_j = \mu_{\text{B}_i} + n_i \mu_{\text{H}^+} - (\mu_{\text{A}_i} + n_i / 2 \mu_{\text{H}_2}) = -n_iF \text{E}_{eq} \]

which gives:

\[\text{E}_{eq} = \text{E}_{A/B} - \text{E}_{\text{SHE}} = (\mu_{A} - \mu_{B})/nF - (\mu_{\text{H}^+} - 1/2 \mu_{\text{H}_2})/F = (\mu_{A} - \mu_{B})/nF \]

since \[\text{E}_{\text{SHE}} = (\mu_{\text{H}^+} - 1/2 \mu_{\text{H}_2})/F = 0 \quad \forall T \text{ by definition} \]

Thus \[\text{E}_{eq} = E_{A/B}^0 + (RT/nF) \text{Ln} \left(\frac{[A_i]}{[B_i]} \right) \approx \text{Nernst law} \]

<table>
<thead>
<tr>
<th>Alkali</th>
<th>Zn$^{2+}$/Zn</th>
<th>SHE</th>
<th>Cu$^{2+}$/Cu</th>
<th>Fe$^{3+}$/Fe$^{2+}$</th>
<th>O$_2$/H$_2$O</th>
<th>Halogen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>0.34</td>
<td>0.5</td>
<td>0.77</td>
<td>1</td>
</tr>
</tbody>
</table>

2nd Joint European Summer School for FC & H2 Technology-Heraklion-September 2012
Reference electrodes:

- Standard Hydrogen Electrode (SHE)
 - Platinum wire
 - Pt/Pt foil
 - 1 M H$_2$SO$_4$
 - p_{H_2} = 1 bar

- Saturated Calomel Electrode (SCE)
 - Platinum wire
 - Hg
 - Hg$_2$Cl$_2$
 - Frit
 - KCl saturated solution
 - KCl crystals
 - Porous Glass Frit
Scheme of a 3-electrode cell for electrochemical measurements with the potential control of the working electrode by a potentiostat
Nernst equation for the H₂/O₂ system

Electrochemical half-cell reactions:

\[
\begin{align*}
H₂ \rightarrow 2 \text{H}^+ + 2 \text{e}^- \\
\frac{1}{2} \text{O}_2 + 2 \text{H}^+ + 2 \text{e}^- \rightarrow \text{H}_2\text{O}
\end{align*}
\]

Overall reaction: \(H₂ + \frac{1}{2} \text{O}_2 \rightarrow \text{H}_2\text{O} \)

Then:

\[
E_{eq} = - \frac{\Delta G_r}{nF} = - \frac{\Delta G^o}{2F} + \left(\frac{RT}{2F} \right) \ln \left[(p_{H₂}) (p_{O₂})^{\frac{1}{2}} / p_{H₂O} \right]
\]

\[
E_{eq} = E^o + \left(\frac{RT}{2F} \right) \ln \left[(p_{H₂}) (p_{O₂})^{\frac{1}{2}} / p_{H₂O} \right]
\]

with \(E^o = - \frac{\Delta G^o}{2F} \) is the standard cell voltage, i.e. \(E^o = 1.229 \text{ V} \) at 25°C, where \(p_{H₂}, p_{O₂}, \) and \(p_{H₂O} \) are the partial pressure of hydrogen, oxygen and water, respectively.

Therefore by increasing the pressure of reactants (H₂ and O₂) and decreasing the pressure of the product (water) one can increase the cell voltage. The variation of \(E_{eq} \) with \(T \) is contained mainly in the entropic term, i.e. \(\Delta S^o_r = nF \left(\frac{dE^o}{dT} \right) \) : temperature coefficient.
Thermodynamics of Hydrogen Oxidation

Anode

\[H_2 \rightarrow 2 H^+ + 2 e^- \] acid medium

\[H_2 + 2 OH^- \rightarrow 2 H_2O + 2 e^- \] alkaline medium

Cathode

\[\frac{1}{2} O_2 + 2 H^+ + 2 e^- \rightarrow H_2O \] acid medium

\[\frac{1}{2} O_2 + H_2O + 2 e^- \rightarrow 2 OH^- \] alkaline medium

\[H_2 + \frac{1}{2} O_2 \rightarrow H_2O \] overall reaction

with \(\Delta G^\circ = -237 \, \text{kJ} \) and \(\Delta H^\circ = -286 \, \text{kJ/mole} \, H_2 \) (standard state)

Energy efficiency under standard conditions: \(\epsilon_r^{\text{cell}} = \frac{\Delta G^\circ}{\Delta H^\circ} = 0.829 \)

\[E_{eq} = E_c^+ - E_a^- = -\frac{\Delta G^\circ}{nF} = \frac{237 \times 10^3}{2 \times 96500} = 1.23 \, \text{Volt} \]

\[W_e = -\frac{\Delta G^\circ}{3600 \times M} = \frac{237 \times 10^3}{3600 \times 2} = 32.9 \approx 33 \, \text{kWhr/kg} \]
Reversible energy efficiency ($I = 0$)

For a Fuel Cell working under standard conditions (25°C, 1 bar):

$$\varepsilon_{cell} = \frac{W_e}{(-\Delta H)} = \frac{n F E_{eq}}{(-\Delta H)} = \frac{\Delta G}{\Delta H} = 1 - \frac{T \Delta S}{\Delta H} = \frac{237}{286} = 83\%$$

For a Thermal Engine, such as an ICE, working between an hot source Q_1 at 350°C and a cold source Q_2 at 80°C:

$$\varepsilon_{thermal} = \frac{W_r}{(-\Delta H)} = 1 - \frac{Q_2}{Q_1} = 1 - \frac{T_2}{T_1} = 1 - \frac{353 \ (80°C)}{623 \ (350°C)} = 43\%$$
Thermodynamic data for the H_2/O_2 combustion reaction (kJ/mol) as a function of temperature

<table>
<thead>
<tr>
<th>Physical state of water</th>
<th>T/K</th>
<th>ΔH</th>
<th>ΔG</th>
<th>E_{eq}</th>
<th>Efficiency ($\varepsilon=\Delta G/\Delta H$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard state</td>
<td>298</td>
<td>-285.83</td>
<td>-237.17</td>
<td>1.229</td>
<td>0.830</td>
</tr>
<tr>
<td>Liquid</td>
<td>328</td>
<td>-284.88</td>
<td>-232.32</td>
<td>1.203</td>
<td>0.816</td>
</tr>
<tr>
<td>Liquid</td>
<td>348</td>
<td>-284.25</td>
<td>-229.14</td>
<td>1.187</td>
<td>0.806</td>
</tr>
<tr>
<td>Liquid</td>
<td>368</td>
<td>-283.61</td>
<td>-225.99</td>
<td>1.171</td>
<td>0.797</td>
</tr>
<tr>
<td>Gaseous</td>
<td>298</td>
<td>-241.82</td>
<td>-228.58</td>
<td>1.185</td>
<td>0.945</td>
</tr>
<tr>
<td>Gaseous</td>
<td>400</td>
<td>-242.84</td>
<td>-223.90</td>
<td>1.160</td>
<td>0.922</td>
</tr>
<tr>
<td>Gaseous</td>
<td>500</td>
<td>-243.82</td>
<td>-219.05</td>
<td>1.135</td>
<td>0.898</td>
</tr>
<tr>
<td>Gaseous</td>
<td>600</td>
<td>-244.75</td>
<td>-214.01</td>
<td>1.109</td>
<td>0.874</td>
</tr>
<tr>
<td>Gaseous</td>
<td>700</td>
<td>-245.62</td>
<td>-208.81</td>
<td>1.082</td>
<td>0.850</td>
</tr>
<tr>
<td>Gaseous</td>
<td>800</td>
<td>-246.42</td>
<td>-203.50</td>
<td>1.055</td>
<td>0.826</td>
</tr>
<tr>
<td>Gaseous</td>
<td>900</td>
<td>-247.16</td>
<td>-198.09</td>
<td>1.027</td>
<td>0.801</td>
</tr>
<tr>
<td>Gaseous</td>
<td>1000</td>
<td>-247.82</td>
<td>-192.60</td>
<td>0.998</td>
<td>0.777</td>
</tr>
</tbody>
</table>
Thermodynamic data for the H_2/O_2 combustion reaction (kJ/mol): $\text{H}_2 + 1/2 \text{O}_2 \rightarrow \text{H}_2\text{O}$

In the liquid state of water ($273 \text{ K} < T < 373 \text{ K}$):

$$\Delta H = \Delta G + T \Delta S = \Delta H_{\text{HHV}} = \Delta H_{\text{LHV}} + \Delta Q_{\text{Cond}}$$

so that in the standard state ($T = 298.15 \text{ K}, p = 1 \text{ bar}$):

$$\Delta Q_{\text{Cond}} = \Delta H_{\text{HHV}} - \Delta H_{\text{LHV}} = -285.8 + 241.8 = -44 \text{ kJ/mol}$$

$$\varepsilon_{\text{r HHV}} = \Delta G^\circ / \Delta H^\circ_{\text{HHV}} = 237/286 = 0.83$$

In the gaseous state of water ($T > 373 \text{ K}$):

$$\Delta H = \Delta G + T \Delta S = \Delta H_{\text{LHV}}$$

so that at e.g. $T = 400 \text{ K} (\approx 127^\circ \text{C}, p = 1 \text{ bar})$:

$$\Delta H = \Delta H_{\text{LHV}} = -242.84 \text{ kJ/mol}$$

$$\varepsilon_{\text{r LHV}} = \Delta G^\circ / \Delta H^\circ_{\text{LHV}} = 224/243 = 0.92$$

HHV = High Heating Value; LHV = Low Heating Value; $\Delta Q_{\text{Cond}} =$ Heat of Condensation
Theoretical energy efficiency (FC vs. Carnot)

\[\varepsilon_{cell} \approx \varepsilon_{Carnot\ 25^\circ C} \approx 0.74 \text{ at } T \approx 1150 \text{ K (877°C)} \]

\[\varepsilon_{cell} \approx \varepsilon_{Carnot\ 80^\circ C} \approx 0.72 \text{ at } T \approx 1250 \text{ K (977°C)} \]
Kinetics Relations

A typical kinetics law in Electrochemistry: the Butler-Volmer equation

- **Kinetics of a simple electrochemical reaction**
- **The Butler-Volmer law**
 - Establishment of the Butler-Volmer law
 - Mass transfer limitations
 - Cell voltage vs. current density curves
 - Energy efficiency under working conditions (j ≠ 0)
Kinetic relations for a simple electrochemical reaction: $A_i + n_i \, e^- \leftrightarrow B_i$

$I = dQ/dt = nF \left(\frac{dN_A}{dt} \right) = nF \left(\frac{dN_B}{dt} \right)$

$I = nF \, v$ with the reaction rate $v = \left(\frac{dN_A}{dt} \right)$

$I < 0$ for a reduction reaction; $I > 0$ for an oxidation reaction
Kinetics of a charge transfer reaction
(heterogeneous reaction) : \(A_i^{zA} + n_i e^- \rightarrow B_i^{zB} \)

Activation barrier for an electrochemical reaction
(K is the decrease in activation energy due to the electrode catalyst)

\[
\Delta G = \Delta G + nF E \neq 0 \Rightarrow I \neq 0 \quad \begin{cases} \Delta G \leq 0 \Rightarrow I \leq 0 : \text{reduction reaction (cathodic)} \quad I_c = -nF v_c \\ \Delta G \geq 0 \Rightarrow I \geq 0 : \text{oxidation reaction (anodic)} \quad I_a = nF v_a \end{cases}
\]
Expression of the reaction rates with the Arrhenius law

\[v_c = k_c (E, T) S C_A^{\text{elec}} = k_c^0 S C_A^{\text{elec}} \exp(-\Delta G_c^+/RT) \text{ with } \Delta G_c^+ = \Delta G_c^+ + \alpha nF E \]

\[v_a = k_a (E, T) S C_B^{\text{elec}} = k_a^0 S C_B^{\text{elec}} \exp(-\Delta G_a^+/RT) \text{ with } \Delta G_a^+ = \Delta G_a^+ - (1-\alpha) nF E \]

where \(\alpha \) is the charge transfer coefficient (0 < \(\alpha < 1 \)), i.e. the fraction of electrical energy which activates the reduction reaction (A \(\rightarrow \) B), and (1-\(\alpha \)) nFE activating the oxidation reaction (B \(\rightarrow \) A). Thus:

\[j = I/S = nF \left[k_a^0 C_B^{\text{elec}} \exp(-\Delta G_a^+/RT) \exp[(1-\alpha)nFE/RT] - k_c^0 C_A^{\text{elec}} \exp(-\Delta G_c^+/RT) \exp[-\alpha nFE/RT] \right] \]

At equilibrium \(v_a = v_c \) and \(j = 0 \), so that \(j_a = -j_c \), \(E = E_{eq} \) and \(C_i^{\text{elec}} = C_i^o \):

\[j_a = -j_c = j_o = nFk_a^0 C_B^o \exp(-\Delta G_a^{o0}RT) \exp[(1-\alpha)nFE_{eq}/RT] = nFk_c^0 C_A^o \exp(-\Delta G_c^{o0}RT) \exp(-\alpha nFE_{eq}/RT) \]

Then \(E_{eq} = E_{eq A/B} + RT/nF \ln(C_A^o/C_B^o) \) with \(E_{eq A/B} = \exp(-\Delta G^o/RT) \approx \text{Nernst law} \)

and \(j_o = nF (k_c^0)^{1-\alpha} (k_a^o)^{\alpha} (C_A^o)^{1-\alpha} (C_B^o)^{\alpha} = nF k_s^o (C_A^o)^{1-\alpha} (C_B^o)^{\alpha} \)

Out of equilibrium \(j = j_a - j_c \neq 0 \). Dividing \(j \) by \(j_o \) one obtains:

\[j(\eta) = j_o \left[(C_B^{\text{elec}}/C_B^o) \exp\{(1-\alpha)(nF/RT)\eta\} - (C_A^{\text{elec}}/C_A^o) \exp\{-\alpha(nF/RT)\eta\} \right] \text{ or} \]

\[j(\eta) = j_o \left[\exp\{(1-\alpha)(nF/RT)\eta\} - \exp\{-\alpha(nF/RT)\eta\} \right] \text{ (no mass transfer limitation)} \]

Butler-Volmer law with \(\eta = E - E_{eq} \) the overvoltage and \(j_o \) the exchange current density
Expression of the Butler-Volmer law in some limiting cases

- Very often $\alpha = \frac{1}{2}$ so that $j(\eta) = 2 j_o \text{sh}[(nF/2RT) \eta]$ \textit{hyperbolic sinus curve}
 If $\alpha = 0$ or 1 then $j(\eta) = j_o \left[\exp(nF/RT \eta) - 1\right]$ or $j(\eta) = j_o \left[1 - \exp(nF/RT \eta)\right]$

- For $|\eta| << RT/nF$ ($\approx 25/n$ mV at 25°C) then $j(\eta) = j_o \left(nF/RT\right) \eta = \eta/R_t$ or $\eta = R_t j$ with $R_t = RT/nFj_o$ the charge transfer resistance \textit{(Ohm’s law)}

- For $\eta >> RT/nF$ then $j(\eta) = j_o \exp[(1- \alpha) nF/RT \eta]$ or $\eta = RT/(1-\alpha)nF \ln(j/j_o)$ and for $\eta << - RT/nF$ then $j(\eta) = - j_o \exp[- \alpha nF/RT \eta]$ or $\eta = -RT/\alpha nF \ln(-j/j_o)$ i.e. $\eta = a \pm b \log |j| \textit{Tafel law}$ with the Tafel slopes $b_i = 2.3 \, \text{RT}/\alpha_i nF$ in V dec$^{-1}$

- For the Hydrogen Oxidation Reaction (HOR) the exchange current density is very high ($j_o \approx 1 \text{ mA cm}^{-2}$) so that the reaction is reversible and the Ohm’s law does apply (linear relationship between overvoltage and current density)

- For the Oxygen Reduction Reaction (ORR) the exchange current density is small ($j_o \approx 1 \mu\text{A cm}^{-2}$) so that the reaction is irreversible (one may neglect the reverse reaction, i.e. water oxidation) and one may write: $j(\eta) = - j_o \exp(-\alpha nF/RT \eta)$ or $\eta_{c\text{act}} = - RT/\alpha_c nF \ln(|j|/j_o)$ \textit{activation overvoltage}
Mass transfer limitations: concentration overvoltage

The reaction kinetics can be controlled by the mass transfer (diffusion, migration, convection) of the reacting species inside the electrolytic phase, so that the current density is proportional to the mass flux density \(J_i \) of species (i):

\[
j_i = |z_i|F J_i \quad \text{with} \quad J_i = 1/S \frac{\Delta N_i}{\Delta t} = C_i v_i \quad (v_i \text{ is the velocity})
\]

\(J_i \) can be expressed by the Nernst-Planck equation:

\[
\vec{J}_i = - \frac{C_i D_i}{RT} \vec{v} \mu_i + C_i \vec{v}^{\text{ext}} = - D_i \nabla C_i - \frac{z_i F}{RT} D_i C_i \nabla \Phi + C_i \vec{v}^{\text{ext}}
\]

In the following we will neglect the contribution of the migration current \(j_i^m = |z_i| F u_i C_i \mathcal{E} = |z_i| \lambda_i C_i \mathcal{E} = \kappa_i \mathcal{E} \) and the convection current \(j_i^{cv} = |z_i| F C_i v_i^{\text{ext}} \) so that we will only consider the diffusion process (Fick’s laws) of species (i):

\[
\vec{J}_i^d = - D_i \nabla C_i \quad \text{(Fick's 1st law)} \quad \text{and} \quad j_i^d = |z_i| F J_i^d
\]

\[
\frac{\partial C_i}{\partial t} = - \text{div} \vec{J}_i^d = D_i \Delta C_i \quad \text{(Fick’s 2nd law \(\approx \) mass conservation)}
\]

with \(D_i = \) diffusion coefficient; \(u_i = z_i F D_i/RT = \) electric mobility;

\(\lambda_i = F u_i = \) molar conductivity; \(K_i = |z_i| \lambda_i C_i = \) ionic conductivity;

\(\mathcal{E} = - \nabla \Phi = \) electrical field.
Resolution of Fick’s equations (in the approximation of a semi-infinite linear diffusion, under steady state conditions):

\[J_i^d = -D_i \frac{\partial C_i}{\partial x}, \quad \frac{\partial C_i}{\partial t} = 0 \quad \text{and} \quad j_i^d = \pm z_i F D_i \left| \frac{\partial C_i}{\partial x} \right|_{x=0} \]

\[\frac{\partial C_i(x,t)}{\partial t} = D_i \frac{\partial^2 C_i(x,t)}{\partial x^2} = 0 \]

leading to \((\frac{\partial C_i}{\partial x}) = \frac{C_{io} - C_i(0)}{\delta} \)

and \(C_i(x) = (\frac{\partial C_i}{\partial x})_{x=0} x + C_i(0) = \frac{C_{io} - C_i(0)}{\delta} x + C_i(0) \) \((0 \leq x \leq \delta)\)
For the electrochemical reaction, $A_i + n_i e^- \leftrightarrow B_i$, the rate of which is controlled only by diffusion, the current density can be written as:

$$j_i = |j_i^d| = nF D_i |c_{io} - c_i(0)| / \delta,$$

with $c_i(0)$ the concentration at the electrode surface.

For high rate, i.e. high current densities, all the reacting species arriving at the electrode surface are immediately consumed and their activity (concentration) becomes 0. Thus the concentration gradient reaches a maximum value, leading to a limiting current density:

$$j_{li} = nF D_i c_{io} / \delta$$

with D_i (in m2/s or cm2/s) the diffusion coefficient of species (i), c_{io} its concentration in the bulk of electrolyte and δ the thickness of the diffusion layer (in the approximation of a semi-infinite linear diffusion).
For a very fast transfer reaction, only limited by mass transfer, the Nernst equation does apply at the surface, leading to concentration overvoltages:

\[E_{eq} = E^o_{A/B} + \frac{RT}{nF} \ln \frac{c_A(0)/c_A^0}{c_B(0)/c_B^0} = E_{1/2} + \frac{RT}{nF} \ln \left[\frac{(j-j_{lc})}{(j_{la}-j)} \right] \]

(equation of a Polarographic Wave assuming the same diffusion coefficients)

For the anode at the condition:

\[\eta_a^{conc} = \frac{RT}{n_aF} \ln \left(1 - \frac{j}{j_{a_{la}}} \right) \]

For the cathode at the condition:

\[\eta_c^{conc} = \frac{RT}{n_cF} \ln \left(1 - \frac{j}{j_{c_{lc}}} \right) \]
E(j) curves limited by mass transfer (diffusion)

Tafel slope $b_c = 60 \text{ mV/dec.}$
Limiting current $j_{lc} = 1.4 \text{ A/cm}^2$
The cell voltage vs. current density characteristics for the H₂/O₂ fuel cell, taking into account charge transfer overvoltages, concentration overvoltages and ohmic drop can thus be written as:

\[
E(j) = E_c(j) - E_a(j) - R_e \left| j \right| = E_{eq} - (|\eta_a^{act}(j)| + |\eta_a^{conc}(j)| + |\eta_c^{act}(j)| + |\eta_c^{conc}(j)|) - R_e \left| j \right|
\]

\[
E(j) = E_{eq} + \frac{RT}{\alpha nF} \ln \frac{j_{o_a}}{j^2} + \frac{RT}{nF} \ln \left[\left(1 - \frac{\left| j \right|}{\left| j_{l_a} \right|} \right) \times \left(1 - \frac{\left| j \right|}{\left| j_{l_c} \right|} \right) \right] - R_e \left| j \right|
\]
Current density vs. electrode potential for electrochemical reactions involved in fuel cells

\[\text{current density} = j = n F v = n F(1/S) \frac{dN_i}{dt} \]

- **H₂** \(E_a \)
- **CH₃OH** \(E = E_c - E_a \approx 0.8 \text{ V} \)
- **O₂** \(E_c \)

- Pt - Ru - X
- Pt - Ru 80 - 20
- Pt - Ru 50 - 50
- Pt

\[E_{eq}(\text{CH}_3\text{OH}) \approx 1.21 \text{ V} \]

\[\eta_a \approx 0.3 \text{ V} \]

\[\eta_c \]
Cell voltage vs. current density $E(j)$ curves

$E_{eq} = 1.23$ V

Charge transfer overvoltage

Ohmic losses $R_e j$

Mass transfer overvoltage

$E(j) = E_c(j) - E_a(j) - R_e j = E_{eq} - (|\eta_c(j)| + |\eta_a(j)| + R_e |j|)$
Energy efficiency under working conditions ($j \neq 0$)

\[E(j) = E^+_c(j) - E^-_a(j) - R_e|j| = E_{eq} - (|\eta_a(j)| + |\eta_c(j)| + R_e|j|) < E_{eq} = E^+_{eq} - E^-_{eq} \]

\[\begin{align*}
 \eta_a &= E^-(j) - E^-_{eq} \quad \text{with } \eta_a > 0 \quad \text{(fuel oxidation)} \\
 \eta_c &= E^+(j) - E^+_{eq} \quad \text{with } \eta_c < 0 \quad \text{(oxygen reduction)}
\end{align*} \]

\[R_e = \text{electrolyte and interface resistance} \]

\[\varepsilon_E = \frac{E(j)}{E_{eq}} = 1 - \frac{(|\eta_a(j)| + |\eta_c(j)| + R_e|j|)}{E_{eq}} = \frac{0.7}{1.23} \approx 57\% \quad \text{and} \quad \varepsilon_F = \frac{j}{j_m} = \frac{n_{exp}}{n} \]

\[\varepsilon_{cell} = \frac{n_{exp} F E(j)}{(-\Delta H)} = \frac{n F E_{eq}}{(-\Delta H)} \times \frac{E(j)}{E_{eq}} \times \frac{n_{exp}}{n} = \varepsilon_{cell} \times \varepsilon_E \times \varepsilon_F \]

\[\varepsilon_{cell} = 0.83 \times 0.57 \times 0.99 \approx 47\% \quad \text{and} \quad \varepsilon_{CHP} \approx 85 \text{ to } 95\% \]
The Polymer Electrolyte Fuel Cell (PEFC)

- Principle of a Polymer Electrolyte Fuel Cell
- Cell components (membrane, catalysts, etc.)
Schematic representation of a PEFC elementary cell

Overall reaction: $\text{H}_2 + \frac{1}{2} \text{O}_2 \rightarrow \text{H}_2\text{O}$ with $\Delta G < 0$
Polymer Electrolyte Fuel Cell (PEFC)

Schematic representation of a PEFC elementary cell
Schematic representation of the Membrane Electrode Assembly (MEA)

- Anode Vent
- Cathode Vent
- Proton Exchange Membrane (~100 µm)
- Gas Diffusion Backing (200 µm)
- Catalyst layer (10 µm)
- Membrane Electrode Assembly (MEA)
- Thickness e = 5 mm
- Thickness e = 500 µm
- 0.5 to 0.9 V

Anode Feed, H₂ Alcohol
Cathode Feed, O₂
Influence of the membrane specific resistance \((R_e = e/\sigma)\) on the cell voltage-current density characteristics \(E(j)\)

\[
E_{eq} = 1,23 \text{ V}
\]

Cell voltage \(E(j) = E^+(j) - E^-(j) - R_e \cdot j\)
E(j) characteristics of a PEFC elementary cell with different membranes:

- ▲ Dow (e = 125 µm);
- ○ Nafion® 115 (e = 125 µm);
- Δ Nafion® 117 (e = 175 µm)

Specific resistance \(R_e = \frac{e}{\sigma} \)
e.g. for Nafion® 115:
0.0125 cm / 0.125 S cm\(^{-1}\)
\(\approx 0.1 \, \Omega \, \text{cm}^2 \)

After K. Prater (Ballard), J. Power Sources, 29 (1990) 239

DUPONT NAFION®

\[\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF} \]

Cell voltage (E/V)

Current density (j/A cm\(^{-2}\))

After K. Prater (Ballard), J. Power Sources, 29 (1990) 239
Influence of the mass transfer limitations (limiting current density j_l) on the cell voltage-current density characteristics $E(j)$

Cell voltage $E(j) = E^+(j) - E^-(j) - R_e j$

- Charge transfer overvoltage
- Ohmic losses $R_e j$
- Mass transfer overvoltage

$E_{eq} = 1.23$ V

$E^+(j) = E_j^+ - R_e j$

$E^-(j) = E_j^+ - R_e j$

$E_{eq} = E^+(j) - E^-(j) - R_e j$

$E_{eq} = E_j^+ - R_e j$

Influence of the mass transfer limitations (limiting current density j_l) on the cell voltage-current density characteristics $E(j)$

- $j_0 = 10^{-6}$ A cm$^{-2}$; $R_e = 0.10 \Omega$ cm$^{-2}$; $j_l = 2.2$ A cm$^{-2}$
- $j_0 = 10^{-6}$ A cm$^{-2}$; $R_e = 0.15 \Omega$ cm$^{-2}$; $j_l = 1.4$ A cm$^{-2}$
Cell voltage vs. current density curves for an H₂/air FC with MEAs using three different types of carbon cathode GDL (80°C, 0.22 mg cm⁻² Pt loading):
- (●) microporous layer-coated and 30 wt.% FEP-impregnated;
- (■) 30 wt.% FEP-impregnated;
- (▲) 10 wt.% FEP-impregnated.

Influence of the catalytic properties of electrodes (exchange current density j_0) on the cell voltage $E(j)$

$$E(j) = E^+(j) - E^-(j) - R_e j = E_{eq} - (\eta_c(j) + \eta_a(j)) - R_e j$$

$E_{eq} = 1.23$ V

Charge transfer overvoltage

Ohmic drop $R_e j$

Mass transfer overvoltage

- $j_0 = 10^{-6}$ A cm$^{-2}$; $R_e = 0.15$ Ω cm2; $j_l = 1.3$ A cm$^{-2}$
- $j_0 = 10^{-8}$ A cm$^{-2}$; $R_e = 0.15$ Ω cm2; $j_l = 1.4$ A cm$^{-2}$
Fuel cell characteristics of a DEFC recorded at 110°C. Influence of the nature of the bimetallic catalyst (30% loading).

Anode catalyst : 1.5 mg.cm\(^{-2}\); Cathode catalyst : 2 mg.cm\(^{-2}\) (40% Pt/XC72 E-TEK)
Membrane : Nafion\(^{\circledR}\) 117; Ethanol concentration : 1 M

Survey of various applications of PEM Fuel Cells

What are their uses?? Production of electric energy (and eventually heat in CHP systems) in a wide range of power (1 W to about 10 MW) with a similar energy efficiency:

- Electric Power Plant (1 to 10 MW)
- Electric Vehicle (10 to 200 kW)
- Auxiliary Power Unit (APU from 1 to 100 kW)
- Aerospace power supply (1 to 50 kW)
- Household Application (1 to 10 kW)
- Power supply for portable electronics (1 to 100 W)
City Bus equipped with a 200 kW FC for the 2008 Olympic Games in Beijing
APU for aircrafts and spacecrafts

Fuel Cell System
Airbus 320 equipped with a PEFC APU as demonstrated by DLR (Germany)
Application to portable electronics (1 to 100 W)

Laptop Computer ~ 10-100 W Cell Phone ~ 1-10 W
The Direct Methanol Fuel Cell (DMFC)

- Principle of a Direct Methanol Fuel Cell
- Reaction mechanisms and kinetics problems
Direct Methanol Fuel Cell

Anode

Electronic conductor
+ catalyst

CH_3OH

$+ \text{H}_2\text{O}$

$\text{CO}_2 + 6\text{H}^+ + 6\text{e}^-$

Cathode

Electronic conductor
+ catalyst

$6\text{e}^- + 6\text{H}^+ + \frac{3}{2}\text{O}_2$

Electrolyte

Ionic conductor
e.g. a PEM

6H^+

6e^-

O_2 (Air)

$3\text{H}_2\text{O}$

$W_e = 6.1 \text{kWhr/kg}$

We = 6.1 kWhr/kg

$\text{CO}_2 + 6\text{H}^+ + 6\text{e}^-$

$\text{C}_2\text{H}_4\text{O}_4$ + H_2O

Direct Methanol Fuel Cell
Reaction mechanism of the electrocatalytic oxidation of methanol at platinum-based electrodes

Pt + CH₃OH → Pt - CH₃OH_{ads}
Pt - CH₃OH_{ads} → Pt - CHO_{ads} + 3 H⁺ + 3 e⁻
Pt - CHO_{ads} → Pt - CO_{ads} + H⁺ + e⁻
Ru + H₂O → Ru – OH_{ads} + H⁺ + e⁻
Pt - CO_{ads} + Ru – OH_{ads} → Pt + Ru + CO₂ + H⁺ + e⁻

Overall reaction CH₃OH + H₂O → CO₂ + 6 H⁺ + 6 e⁻
This a complex 6-electron reaction mechanism, which needs the preparation of bimetallic and plurimetallic electrocatalysts for methanol oxidation catalysts.

Modification of platinum by Ruthenium using the colloidal method (after Bönnemann et al.)
Evaluation of the electrocatalytic activity of PtRu / C electrodes by cyclic voltammetry (room temperature)

Oxidation of preadsorbed CO (v=50mV s⁻¹)

- On same C particles
- Alloy
- On different C particles
- Platinum

Oxidation of 0.1M methanol (v=5mV s⁻¹)

- On same C particles
- Alloy
- Platinum
- On different C particles
Effect of the crossover of the fuel through the polymer membrane

Permeability to methanol of different Solvay membranes in comparison with Nafion®117 at room temperature.
As a result of the crossover of the fuel to the cathode, the electrode potential E_m will be determined by a mixed reaction resulting from the reduction of oxygen and the oxidation of methanol at the same potential E_m. As both reactions are quite irreversible, a Tafel behavior is practically always observed. Under these conditions, the current density (j_m) and mixed potential (E_m) are given by the equations:

$$j_m = j_{oa} 10^{\frac{E_m - E_a^0}{b_a}} = j_{oc} 10^{\frac{E_m - E_c^0}{b_c}}$$

and:

$$E_m = \frac{b_c E_a^0 + b_a E_c^0}{b_a + b_c} + \frac{b_ab_c}{b_a + b_c} \log\frac{j_{oc}}{j_{oa}}$$

where j_{oi} and b_i are the exchange current density and the Tafel slopes, respectively, for both half-cell reactions.

This will result in a negative shift, ΔE_m, of the mixed potential at the oxygen cathode, as given by the following equation:

$$\Delta E_m = \frac{b_ab_c}{b_a + b_c} \log\frac{j_{oa}}{j_{oa}'} \approx \frac{120}{2} \log 10^{-3} \approx -180 \text{ mV}$$

with $j_{oa}' = 10^3 j_{oa}$ and $b_a \approx b_c \approx 120 \text{ mV/decade}$ for both the oxygen reduction (at high current densities) and the methanol oxidation reactions.
Effect of methanol crossover through the membrane

Polarization curves of an H$_2$/O$_2$ PEFC and a DMFC in the presence of methanol at the cathodic compartment: (■) potential of the PEFC cathode; (O) potential of the DMFC cathode; (△) DMFC cell voltage.
E(j) and P(j) curves of a single DMFC with Pt-Ru/C electrodes of different Pt-Ru atomic ratios

Anode 2 mg.cm$^{-2}$ Pt-Ru / C, Nafion 117, Cathode 2 mg.cm$^{-2}$ Pt / C, [MeOH] = 2 M, 2 mL/min., $P_{\text{MeOH}} = 2$ bar; $T_{\text{cell}} = 110^\circ$C, $O_2 = 120$ mL/min., $P_{O_2} = 2.5$ bar; $T_{\text{MeOH}} = T_{O_2} = 95^\circ$C.
Applications of DMFC to portable electronics: cell phone, laptop computer, cam recorder, etc.

TOSHIBA DMFC for portable applications
Different kinds of applications of FC

GdR n°3339
Piles A Combustible, Systèmes

Bio-fuel Cells
Portable
Mini PAC
GdR PACEM
PEFC
Transportation
Stationary
Aerospace
GdR ITSOFC

MCFC
PAFC
SOFC
AFC

1 mW 0.1 W 1 W 10 W 100 W 1 kW 10 kW 100 kW 1 MW

GdR PACEM

1 mW 0.1 W 1 W 10 W 100 W 1 kW 10 kW 100 kW 1 MW

GdR PACEM
References

Thank you for your kind attention