Mitglied der Helmholtz-Gemeinschaft

Joint European Summer School for Fuel Cell and Hydrogen Technology Heraklion, Crete 21st September 2012

Characterization Methods

In-situ Methods

Robert Mücke

Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research (IEK-1: Materials Synthesis and Processing)

Why in situ Methods?

Overview

Technique	Observable(s)	Pro	Cons	
Electrochemical voltammetry	Current and power density	Ultimate performance metric	Often chemically ambiguous and model specific	
Impedance spectroscopy	Cell and electrolyte resistance	Activation barriers and ohmic losses	Often chemically ambiguous and model specific	
Products				
Mass spectroscopy Gas chromatography	Gas products and fuel utilization	Monitors efficiency	Indirect, vulnerable to interferences	
XRD	Phase structure, stresses	Chemically specific	Only for crystalline	
XPS	Material compos. and structure	Material specific	Challenging in situ, elemental rather than molecular information	
EXAFS, XANES	Composition and adsorbates, oxidation states	Chemically specific	Challenging for experiments and interpretation	

extended, after Pomfret et al, Annu. Rev. Anal. Chem. 2010. 3:151–74 Robert Mücke, Joint European Summer School for Fuel Cell and Hydrogen Technology

Overview

Technique	Observable(s)	Pro	Cons		
Optical					
Raman spectroscopy	Composition, struc- ture, temperature, stresses of mater. and adsorbates	Molecular and material specific, kinetics, real time	Used for a single position at a time		
Infrared spectroscopy	Surface species	Adsorbate structure specific,broad spatial coverage, real time	Experimentally challenging		
Imaging (vis+IR)	Emission, temperature	Spatially resolved, real time	Lacks molecular specificity		
Radiography / Tomographypenetrating bulkelement spec. only			element spec. only		
X-Ray CT/synchrotron	Contrast by atomic number (e shell)	high resolution (0.5-2 μm)	weak contrast for adjacent elements		
Thermal neutrons	Contrast by nucleus interaction	often contrasts adjacent elements	low resolut. (>30µm) more expensive		
NMR	Magnetic spin of nucleus	high resolut. (1-3µm) smaller devices	no ferror-magnetic materials, small scale		

Treated Methods in More Detail

- 1. Temperature & Optical Access
- 2. Electrochemical Impedance Spectroscopy
- 3. Local Measurements (Current Distribution, Voltammetry, Gas Analysis)

4. Radiography & Tomographic Imaging Computed Tomography / X-Ray Imaging Synchrotron Tomography Neutron Imaging Nuclear Magnetic Resonance Imaging (NMR)

- 5. X-Ray Diffraction and Spectroscopy (XRD, XAS, XPS)
- 6. Raman Spectroscopy

5

7. Scanning Probe Microscopes

Robert Mücke, Joint European Summer School for Fuel Cell and Hydrogen Technology

1. Temperature and Optical Access

The Easiest in situ Measurement Temperature (SOFC)

SOFC Stack Temperature In Plane Distribution

 ΔT upto 100K can occur \Rightarrow critical for mechanical integrity esp. glass sealings

special interconnects required

endothermic reactions when reforming CH_{4}

 \Rightarrow larger ΔT

depends on $u_{\rm F}$ (less fuel, less reforming)

Temperature distribution in bipolar plate

L. Blum et al., 10th European SOFC Forum Lucerne 2012, A0405

SOFC Stack Temperature Height Distribution

60 cell stack

Robert Mücke, Joint European Summer School for Fuel Cell and Hydrogen Technology

Optical Access In Plane

9

special transparant window required only specific layers accessible (GDL)

Optical Access In Plane

Optical Access Through Plane

water in cathode GDL

Daino et al., Electrochemical and Solid-State Letters, 14 (6) B51-B54 (2011)

Optical Access Through Plane (Cross Section)

thermal imaging:

0.1K resolution possible critical point: unknown emissivities

Daino et al., Electrochemical and Solid-State Letters, 14 (6) B51-B54 (2011)

Robert Mücke, Joint European Summer School for Fuel Cell and Hydrogen Technology

2. Electrochemical Impedance Spectroscopy

"Insights" without direct access

Institut für Werkstoffe der Elektrotechnik Quelle: IWE

2011-09-22 Degradation Workshop Thessaloniki.ppt, Folie: 28, 06.09.2012

Quelle: IWE

2011-09-22 Degradation Workshop Thessaloniki.ppt, Folie: 30, 06.09.2012

André Weber, KIT

3. Local Electrochemical and Products Measurements

Robert Mücke, Joint European Summer School for Fuel Cell and Hydrogen Technology

Local Current Measurement (PEMFC)

goals: check flow field, local fuel utilization / fuel supply local channel/land effects

Local Current Measurement Large Segments

influence of air excess (λ factor)

Schönbauer, PhD thesis, Univ. Stuttgart, 2009

Robert Mücke, Joint European Summer School for Fuel Cell and Hydrogen Technology

Local Current Measurement (SOFC) Large Segments

Local Current Measurement (SOFC) Large Segments

Robert Mücke, Joint European Summer School for Fuel Cell and Hydrogen Technology

Local Current Measurement Perpendicular to Flow Channels

S. von Dahlen, PhD thesis, ETH Zürich, 2012

Local Current Measurement Perpendicular to Flow Channels

Gold wires (25µm) between GDL and catalyst coated membrane

Local Current Measurement Perpendicular to Flow Channels

Perpendicular to Flow Channe micro flow field plate on anode side

most losses on cathode side

quasi homogeneous anode (much thinner channels)

H2 diffuses into Au pinned structure

fully humidified H2 => no GDL on anode side requ. (cross currents of catalyst layer can be neglected)

CCM: catalyst coated membrane

S. von Dahlen, PhD thesis, ETH Zürich, 2012

Local Current Measurement **Perpendicular to Flow Channels**

glass ceramic milling channels (200µmx800µm distance 200µm) fill with Au, polish mill 150µm x150µm between Au parallel + perpendicular

microstructure anodic flow field plate

29

current measurement: high precision shunt resistors (20 m Ω)

pin size compared to GDL fibers

S. von Dahlen, PhD thesis, ETH Zürich, 2012

Local Current Measurement Transient Start/Stop Behavior

Cyclic Voltammetry

primarily used to get electrochemical available surface area (ECSA) start/stop cycles \rightarrow carbon corrosion \rightarrow loss of Pt particles \rightarrow decrease of ECSA can be extended to local distribution

linear sweep waveform

anode (CE): H_2 (fully humidified) cathode (WE): N_2 (fully humidified) no O_2 to avoid superposition with O_2 reduction reaction

S. von Dahlen, PhD thesis, ETH Zürich, 2012

Cyclic Voltammetry

JÚLICH

measure the chemsorption of H₂ on Pt surface

Cyclic Voltammetry H₂ Reduction Currents

Electrochemical Available Surface Area via CO stripping

5 min 1% CO => CO mono layer on Pt, 5 min N₂ (CO removal in GDL)

CO desorps at ~0.6 V

35

CO peak independent of N_2 (H_{upd} not)

higher degradation at land region negative current in lands during start higher than negative currents in channels during stop

S. von Dahlen, PhD thesis, ETH Zürich, 2012

Robert Mücke, Joint European Summer School for Fuel Cell and Hydrogen Technology

G.A. Schuler, PhD thesis, ETH Zürich, 2010

Local Gas Phase Measurements Linear PEMFC

j=0 or 0.375 A/cm²; *T*=80°C; anode: 90% H₂ / 10% He, rH=46%, λ =3 cathode: air, rH=50%, λ =2 *p*=1.5 bar_{abs}; condensation on cathode side (40-60%)

 $j=0 <->0.3 \text{ A/cm}^2$ (cycled: 30s, dj/d $t=0.05 \text{ A/cm}^2$ s); $T=80^\circ$ C; anode: 90% H₂ / 10% He, rH=30%, $\lambda=2$ cathode: air, rH=30%, $\lambda=2$ $p=1.5 \text{ bar}_{abs}$; G.A. Schuler, PhD thesis, ETH Zürich, 2010

4. Radiography & Tomography

39

Element Specific Attenuation X-Rays vs. Thermal Neutrons

Helmholz Zentrum Dresden

Tomography at Synchrotron

CCD sensor up to 12 MPx

e.g. 2 µm resolution

typical exposure time:

max. accuracy, if

larger or equal to CCD pixel width

speed)

 \Rightarrow 8.5×5.5 mm² field of view

2-10s per angle projection

number of angle projections

(often lower due to scanning

JÜLICH

Further Maximum Resolution Constrains (Stage)

spot selection tomographic rotation

alignment of rotation axis relative to the beam and detection system (down-to 0.01°)

Stage setups at BAMline, BESSY, Berlin

	Micos UPR-160 AIR	Huber 410	
eccentricity	0.1 µm	3 µm	
max load	200 N	1450 N	

47

T. Arlt, Ph.D. thesis, TU Berlin, 2012

Robert Mücke, Joint European Summer School for Fuel Cell and Hydrogen Technology

X-Ray Tomography Example Water Detection in PEMFC

Cell & flow field adapted to fit beam dimensions (19.2×7.2)

voxel size: 4.8 µm 1800 angle projections 60 min per tomogram, closed inlets/outlet for tomography

No steel in analyzed area! (would shield everything) instead, use of acrylic glass in end plates (other use e.g. graphite)

X-Ray Tomography Example Water Detection in PEMFC

Krüger et al., J. Power Sources 196 (2011), 5250 Robert Mücke, Joint European Summer School for Fuel Cell and Hydrogen Technology

X-Ray Tomography Example Water Detection in PEMFC

Krüger et al., J. Power Sources 196 (2011), 5250

X-Ray Radiography Example Transient Water Detection in DMFC

Transient methods require **fast** acquisition \Rightarrow 2D radiography instead of 3D tomography (exposure time ~0.4 s)

for reasonable signal/noise ratios and short exposure times: make everything **as thin as possible**

other way to get short exposure 2D radiogram / 3D tomogram: use short times, repeat experiment multiple times to get good signal/noise ratio (requires triggering e.g. with current load) thinning flow field plate for in plane 2D radiography

T. Arlt, Ph.D. thesis, TU Berlin, 2012

Robert Mücke, Joint European Summer School for Fuel Cell and Hydrogen Technology

JULICH X-Ray Radiography Example **Transient Water Detection in DMFC** 119,88s 68.40s Ref (dry) 7,92s 15,48s 28,44s 35,28s 35,64s 47,52s anode channel an. GDL an. catal. 100 µm membrane cat. catal. cat. GDL cathode channel fields for -100 µm quantitative analysis λ_{an/ca}t=4/4; *j*=150 mA/cm²; E=13 keV

anode: CO₂ bubbles cathode: water droplets

decrease p

periodic GDL fiber structure

T. Arlt, Ph.D. thesis, TU Berlin, 2012

Robert Mücke, Joint European Summer School for Fuel Cell and Hydrogen Technology

X-Ray Tomography Water Detection in HT-PEFC

JÜLICH

no liquid water \Rightarrow traditional analysis fail

Indirect method:

Model from measured membrane transmission and thickness, and local phosphoric acid distribution

T. Arlt, Ph.D. thesis, TU Berlin, 2012

W. Maier et. al, Journal of The Electrochemical Society, 159 (8) F398-F404 (2012)

Robert Mücke, Joint European Summer School for Fuel Cell and Hydrogen Technology

X-Ray Tomography Example (DMFC) Ruthenium Corrosion / Combining with XAS

Transmission vs. Energy	21.7 keV	22.5 keV	differ- ence
Pt (3.2 µm)	0.660	0.686	3.9 %
Ru (0.8 µm)	0.989	0.938	-5.2 %
C (240 µm)	0.983	0.984	0.1 %
F (50 µm)	0.999	0.999	0.0 %

Ru in anode catalyst overlay of quotient tomogram and absorption tomogram

i.e. measure two tomograms at different energies, divide them

T. Arlt, Ph.D. thesis, TU Berlin, 2012

IÜLICH X-Ray Tomography Example (DMFC) **Ruthenium Corrosion / Combining with XAS**

Neutron Radiography / Tomography

Fast neutrons: Epithermal neutrons: 0.3 eV - 10 keV Thermal neutrons: Cold neutrons:

10 keV - 20 MeV 0.005 eV - 0.3 eV <0.005 eV

Sources: fission reactor or spallation source (p accelerator) with moderator

- Gadolinium Cadmium el 600 Water HM) RD> antalium rungsten Platie PETN 0,4 0.3 0.5 Thickness for 50% thermal neutron attenuation (cm)
- advantages over X-Ray
- different contrast
- no problem with Fe/steel
- typ. larger penetration
- no radiation damage

neutrons are difficult to focus

- \Rightarrow no completely parallel beam
- \Rightarrow limits resolution or flux

Robert Mücke, Joint European Summer School for Fuel Cell and Hydrogen Technology

applications: process visualization, water quantification, flow field plate optimization

Nuclear Magnetic Resonance Tomography (NMR)

Nuclear Magnetic Resonance Tomography

medium - high magnetic field devices requires (2-14T) typical pixel numbers: 128x128 (rather low) resolution: 1-6 µm no ferro-magnetic materials

Robert Mücke, Joint European Summer School for Fuel Cell and Hydrogen Technology

5. X-Ray Diffraction and Spectroscopy

X-Ray Diffraction Analysis

constructive interference (Bragg equation):

 $n \cdot \lambda = d \cdot \sin \theta$

results:

XRD diffractogram (is not a spectrum, fixed wavelength, Cu-K α radiation, 0.15nm) chemical phases (crystallographic system, with database) unit cell parameters \Rightarrow strains \Rightarrow stresses (e.g. sin² ψ method)

limits:

only crystalline phases (no amorphous, no organics)

Robert Mücke, Joint European Summer School for Fuel Cell and Hydrogen Technology

X-Ray Diffraction Analysis In situ Analysis of SOFC Reduction Cycling

61

JÜLICH

manufactured NiO reduces above 800K

Sumi et al., Trans. ASME 3 (2006), 68

X-Ray Spectroscopy XAS, EXAFS, XANES

- X-Ray Absorption Spectrum (XAS)
 - X-Ray Absorption Near Edge Spectrum (XANES)
- Near Edge X-RAY Absorption Fine Structure (NEXAFS)
- Edge X-RAY Absorption Fine Structure (EXAFS)

influenced by oxidation level, neighborhood (spin coupling)

oxidation level shift edge in XANES region used to determine oxidation level of Fe in La_xSr_{1-x}Co_yFe_{1-y}O_{3- δ} (~2.5 $\Rightarrow \delta$ =~0.5) no provable oxidation of Mn in LSM

Ce Oxidation State with XPS

CeO₂: normally Ce⁴⁺

but may be reduced to Ce³⁺:

 $2Ce^{4+} + O^{2-} + H_2(g) \Leftrightarrow$ $2Ce^{3+} + V_O + H_2O$

CeO_{2-x}: mixture Ce^{4+ &} Ce³⁺

contact less potential measurement by change in kinetic energy due to local potential V_1

$$\Delta E_{\rm kin} = \mathbf{e} \cdot V_{\rm L}$$

(electrolyser) Zhang et al. Nature Materials 9 (2010), 944

Ce Oxidation State with XPS

Zhang et al. Nature Materials 9 (2010), 944

JÜLICH

6. Raman Spectroscopy

Robert Mücke, Joint European Summer School for Fuel Cell and Hydrogen Technology

Raman Spectroscopy Principle

electronic transitions, temperature, stress)

=finger print of material and chemical composition

Temperature Dependence of Raman Shifts

Grüneisen parameter (lattice volume *V*, photon frequ. ω)

JÜLICH

$$\gamma = -\frac{\partial(\log\omega)}{\partial(\log V)}$$

thermal expansion changes lattice

Nagai et al., ECS Transactions, 35 (1) 519-525 (2011)

Raman Shift Stress Calculation

volume change due to in plane stress σ $\frac{dV}{V} = \left(1 - \frac{2v}{E}\sigma\right)\left(1 + \frac{1 - v}{E}\sigma\right)^2 - 1$ $\int_{0}^{465} \int_{0}^{460} \int_{0}^{400} \int_{0}^{40} \int_{0}^{40} \int_{0}^{40} \int_{0}^{40} \int_{0}^{40} \int_{0}$

much more sensitive to temperature
than to stresses =>
accurate temperature measurement necessary

Nagai et al., ECS Transactions, 35 (1) 519-525 (2011)

Robert Mücke, Joint European Summer School for Fuel Cell and Hydrogen Technology

better would be in situ XRD (smaller error:

JÜLICH

approx. 20-50 MPa)

Nagai et al., ECS Transactions, 35 (1) 519-525 (2011)

Carbon Detection SOFC Fuel Oxidation

7. Scanning Probe Microscopy

Scanning Probe Microscopy (SPM)

Simultaneous recording of topography as well as conductivity images

Topographical images are obtained like in a normal AFM in contact mode

In situ electrochemical impedance spectroscopy (EIS) measurement can be done using the probe as a working electrode

Controlled Atmosphere High Temperature SPM

77

Balasingam, Risoe

Summary

- Virtually all *ex situ* methods can be applied *in situ* with certain restrictions, thereby large improvement of understanding
- However, most *in situ* methods require special setups (cells, stacks components, no out-of-the-box stacks etc.)
- Modification should be evaluated (same behavior as normal)
- Only electrochemical methods allow in-situ characterization of any system without modification
- Many methods allow similar investigations with different resolution and experimental afford
- Many in situ methods are expensive, can therefore not be used for everyday business/benchmarking, only for well planed purpose
- Theoretical background (what do I see?) can be quiet comprehensive (speak with experts)

79