2nd Joint European Summer School on Fuel Cell and Hydrogen Technology Crete, 17th – 28th Sept. 2012

UNIVERSITY^{OF} BIRMINGHAM

Basic Thermodynamics and System Analysis for Fuel Cells

Prof. Dr. Robert Steinberger-Wilckens Centre for Hydogen & Fuel Cell Research University of Birmingham

Overview

- Basics of Thermodynamics
- Thermodynamics applied to fuel cells and electrolysis
- System analysis

A very brief Introduction to Thermodynamics

Thermodynamics & System Analysis

Slide 3/61 JESS 2 / 2012

The Model Thermodynamic World

Consider a volume and ist boundary:

system variables:

- T temperature
- p pressure
- V volume
- m mass

It has a given state of being, quantified by the ,inner energy state' *U*.

It exchanges activities with the surroundings by transporting mass and energy across the boundary.

Slide 4/61 JESS 2 / 2012

Example Representation

The 4 Laws of Thermodynamics

- 1. Existance of temperature ("0th" Law)
- 2. Conservation of energy (1st Law)
- 3. Definition of Entropy (2nd Law)
- 4. Entropy at T = 0 (3rd Law)

1st Law of Thermodynamics

Any change of inner energy *U* is balanced by the exchange of heat *Q* and work *W*

U = Q + W

or rather

dU = dQ + dW

Consequences:

- conservation of energy, d U = 0 in isolated system
- impossibility of perpetuum mobile of the first kind (delivering work)

Steady State and Transitions

Strictly speaking, all thermodynamic laws are only valid in the steady state (equilibrium).

A transition from one state to another must therefore be calculated in infinitesimal steps. These are assumed to be in balance.

Between two states at times t_1 and t_2 going through a transition, a *process* takes place.

If the process can be reversed and the state at t_1 be achieved again, the process is *reversible*.

2nd Law of Thermodynamics

Every system possesses a property S (entropy) that can be calculated from

d S = d Q / T

In irreversible processes d S \ge d Q / T

Consequences:

- creation of entropy,
- impossibility of perpetuum mobile of the second kind (converting heat to work)

1st + 2nd Law of Thermodynamics

Combining we get

$$d U = d W + d S \cdot T$$

or

 $d W = d U - d S \cdot T$

or

$\Delta H = \Delta G + T \Delta S$	with H ,enthalpy'	
	G, free enthalpy' c	or
$\Delta G = \Delta H - I \Delta S$,Gibb's ene	ergy'

Thermodynamic Machines

The relevant thermodynamic processes can mostly be considered as circular processes or ,machines'.

The Carnot Machine: Volume Reaction

- 1. isothermal compression
- 2. adiabatic compression
- 3. isothermal expansion
- 4. adiabatic expansion

The Carnot Machine (2)

efficiency: $\eta_c = W / Q_1$

from $\label{eq:Q1} \begin{array}{l} Q_1 - Q_2 - W = 0 \hspace{0.2cm} (1^{st} \hspace{0.2cm} Law) \\ and \\ dS = dQ \hspace{0.2cm} / \hspace{0.2cm} T \hspace{0.2cm} (2^{nd} \hspace{0.2cm} Law) \\ it \hspace{0.2cm} follows \hspace{0.2cm} that \\ \eta_c = 1 - \hspace{0.2cm} T_2 \hspace{0.2cm} / \hspace{0.2cm} T_1 \end{array}$

Fuel Cell Principle: Surface Reaction

0 0

(+)

Hydrogen Production: Electrolysis

Splitting of water by electric current

F ... Faraday constant = 96.587 C/mol

Question: Definition of ,cathode' and ,anode'?

Electrolysis Thermodynamics

 $H_2O \xrightarrow{2F} H_2 + 1/2 O_2$

Free enthalpy

 $\Delta G^{\circ} = 237 \text{ kJ/mol}$ (at 25°C, 1 bar = ,standard' conditions) = 2F U^o_o

It follows that

$$U_{0}^{o} = 1,23 V$$

which is the voltage necessary for water splitting (ideal case at standard conditions).

Electrolysis Overpotential

Due to kinetic processes and competition of ion reactions at the electrodes the technically necessary Voltage for electrolysis is considerably higher, generally at the order of 1,7 to 1,9 V.

The ideal amount of energy needed per $Nm^3 H_2$ is

 $\Delta G^{\circ} / V_{N} = 237 \text{ kJ/mol} / 22,41 \text{ l/mol} = 3 \text{ kWh/Nm}^{3}$

Standard electrolysers require about 4,2 to 4,8 kWh/Nm³

Question: lower or higher heating value? (LHV or HHV)

Electrolysis Temperature Dependency

Due to the relationship

 $\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S$

The energy for splitting water can also be supplied by heat, not only electricity.

Graphics from Winter/Nitsch, 1988

Slide 18/61 JESS 2 / 2012

Gibbs free energy for H₂ - O₂ reaction

Form of water product	Temperature [°C]	G [kJ/mol]	U _o [V]
Liquid	25	-237,2	1,23
Liquid	80	-228,2	1,18
Gas	80	-226,1	
Gas	100	-225,2	1,17
Gas	200	-220,4	1,14
Gas	400	-210,3	1,09
Gas	1000	-177,4	0,92
Other fuels	Temperature [°C]	G [kJ/mol]	U _o [V]
Methanol Methane Alkali (battery)	25 25 25	-698,2 -802,7 -277	1,21 1,04 1,44

Generating Entropy? Loosing Energy?

consequence:

- less energy needed for electrolysis
- less energy reclaimed in fuel cell

Electrode Definition

Slide 21/61 JESS 2 / 2012

Reaction Equilibrium: Fuel Cell Case

Cathode side	1/2 O ₂ + H ₂ O + 2e ⁻	 2 OH ⁻
Anode side	H ₂ + 2 OH ⁻	 2 H ₂ O + 2e⁻
Overall reaction	H ₂ + 1/2 O ₂	 H ₂ O

 U_o (open circuit) is identical to that of electrolysis (but negative!) $\Delta G^o = 2F U_o^o = -237 \text{ kJ/mol}$ (at STP, for H₂ - O₂ cell) $U_o^o = 1,23 \text{ V}$ (for convenience, U is not marked as negative) i.e. energy is <u>released</u>.

Schematic Voltage Characteristics: Electrolysis and Fuel Cell

Fuel Cell Efficiency

1. Efficiency = useful output / total input

 $\eta = Q_{el} / - \Delta H$

2. Ambiguity: HHV or LHV?

3. Maximum possible efficiency (thermodynamic efficiency)

 $\eta = \Delta G / \Delta H$

assuming that all change in Gibbs free energy can be transformed to electricity

alternative: $\eta = U / U_o^o$ (since U = - $\Delta H / 2F$)

Compare to Carnot efficiency $(T_1 - T_2) / T_1$ $(T_{1,2} in [K])$ and Betz efficiency (58%)

Maximum Efficiency as Function of Temperature

Form of Temperature [°C] G [kJ/mol] U_o [V] η water product

Liquid	25	-237,2	1,23	83%
Liquid	80	-228,2	1,18	80%
Gas	80	-226,1		
Gas	100	-225,2	1,17	79%
Gas	200	-220,4	1,14	77%
Gas	400	-210,3	1,09	74%
Gas	1000	-177,4	0,92	62%

Some Fuel Cell Principal Properties

- 1. not limited by Carnot efficiency (~ $(T_1-T_2)/T_1$), only by electrochemical, kinetic and ohmic losses
- 2. modular
- 3. low noise
- 4. exhaust emission predominantely water (and maybe CO_2)
- 5. no moving parts

ergo:

• efficient and low-emission energy conversion technology

Increasing Efficiencies

High Efficiency Electricity Production

Thermodynamics & System Analysis

An Introduction to Energy and Efficiency

Thermodynamics & System Analysis

Slide 29/61 JESS 2 / 2012

Overview of Indicators

- Efficiency

 of a single process
 of a process chain
 of energy services
- Primary energy consumption
 * direct
 - * cumulative energy
- Fossil energy consumption
- Direct emissions
- Direct & indirect emissions (LCA)
- Energy payback (harvest factor)
- Externalities

Energy Efficiency Definitions

< = (desired) energy output / (necessary) energy input</pre>

conventional:

energy input given as lower heating value (LHV)

result (example): out of 1 Nm³ of natural gas equivalent to 10 kWh, 1 kWh is disregarded

reason: 10% of the combustion energy is contained in the exhaust gas as water vapour and not sensible heat

→ < is calculated approx. 10% higher than corresponds to the factual chemical energy content of the fuel

Energy Efficiency Definitions /2

correct (but unconventional):

energy input given by higher heating value (HHV)

→ < corresponds to the factual chemical energy content of the fuel and gives the full picture of the conversion technology

= energy output / energy input (HHV)

Conventional boiler

- PE primary energy
- UE useful energy
- CO combustion

Coal or Nuclear power plant $1 \text{ pc} \rightarrow \text{ FG} \rightarrow 0.22 \text{ JU}$

Combined Cycle power plant

Renewable Energy power plant

EG → 1 UE (= 1 PE)

- UE useful energy
- EG electricity generation

Average German Electricity Grid 1 PE $\rightarrow EG \rightarrow 0,33$ UE $\downarrow \downarrow \downarrow 0,33$ UE CO₂ NO_x

- PE primary energy
- UE useful energy
- EG electricity generation

PE	primary energy
UE	useful energy
	fuel cell

- FC fuel cell
- FP fuel processing

reference case Natural Gas PEFC Residential System cond. ← 0,43 PE ✓ 0,41 UE heat $\eta = 0.85$ $\eta = 0,87$ boiler 1 PE — FP FC electricity 0,34 UE electricity ← 1,03 PE grid CO_2 H_2O Σ = 1,46 PE reference case Natural Gas SOFC Residential System cond. 0,33 UE heat ← 0,35 PE $\eta = 0.80$ boiler 1 PE FC electricity 0,50 UE electricity ← 1,51 PE arid H_2O CO_{2} Σ = 1.86 PE

- PE primary energy
- UE useful energy
- EG electricity generation
- FP fuel processing
- CH compressed hydrogen

Internal combustion motor

BIRMINGHAM

- PE primary energy
- UE useful energy
- EG electricity generation
- internal combustion engine ICE
- FP fuel processing
- compressed H₂ CH
- liquid H_2 LH

*H*₂ Internal combustion motor, grid electricity

Slide 38/61 JESS 2 / 2012

PE primary energy

UE useful energy

EG electricity generation

FC fuel cell

FP fuel processing

CH compressed H₂

 H_2 FC vehicle, wind energy

$$1 \text{ PE} \longrightarrow \begin{bmatrix} \eta = 0.67 & \eta = 0.85 \text{ (CH)} \\ \hline \text{ELY} & \rightarrow \end{bmatrix} \xrightarrow{\text{FP}} \xrightarrow{\eta = 0.40} \\ \hline \text{FC} & \rightarrow \end{bmatrix} \xrightarrow{0.23 \text{ UE}} \\ \downarrow \\ \eta = 0.40 \\ \hline \text{H}_2\text{O}$$

Coal or Nuclear power plant + grid

 $1 \text{ PE} \xrightarrow{\bullet} \underbrace{\text{EG}}_{\text{CO}_2 \text{ NO}_x} \xrightarrow{\bullet} 0,33 \text{ UE}$

PE primary energy

UE useful energy

- EG electricity generation
- FP fuel processing
- ICE internal combustion engine

Internal combustion engine

1 PE
$$\rightarrow$$
 \overrightarrow{FP} \rightarrow \overrightarrow{ICE} \rightarrow 0,13 UE (propulsion)
 $\overrightarrow{CO_2 NO_x CO}$

Combined Heat and Power (CHP)

use of waste heat from electricity generation for heating purposes etc.

Slide 41/61 JESS 2 / 2012

SenerTec ,Dachs' Hot water storage and buffer

photographs courtesy SenerTec

Slide 42/61 JESS 2 / 2012

Micro-CHP – Stirling engine

graphics courtesy KWB

Slide 43/61 JESS 2 / 2012

Thermodynamics & System Analysis

Gas Engine CHP

- PE primary energy
- UE useful energy
- EG electricity generation

reference case

Slide 44/61 JESS 2 / 2012

CHP Unit Efficiencies

Slide 45/61 JESS 2 / 2012

- PE primary energy
- UE useful energy
- EG electricity generation
- FC fuel cell
- FP fuel processing
- CH compressed H₂

 H_2 FC vehicle, wind energy

$$1 \text{ PE} \longrightarrow \begin{bmatrix} \eta = 0.67 & \eta = 0.85 \text{ (CH)} \\ \hline \text{ELY} & \rightarrow \end{bmatrix} \xrightarrow{\text{FP}} \xrightarrow{\eta = 0.40} \\ \hline \text{FC} & \rightarrow \end{bmatrix} \xrightarrow{0.23 \text{ UE}} \\ \downarrow \\ \eta = 0.40 \\ \hline \text{H}_2\text{O}$$

Vehicle Requirement Profile

New European Driving Cycle example

source: EU

CUTE Results: Total system efficiency

source: CUTE

Slide 48/61 JESS 2 / 2012

Change in On-Board E-Power Generation

Thermodynamics & System Analysis

Slide 49/61 JESS 2 / 2012

Cumulative Energy: Definitions

b = total chain energy efficiency = (end) energy output / (primary) energy input

,Energy input' includes all input, i.e. not only for operating the system, but also for building it.

EF = energy harvest factor = energy output / fossil energy input

Cumulative Energy: NG Steam Reforming

source: FfE

Cumulative Energy: PV-Hydrogen production

source: FfE

Slide 52/61 JESS 2 / 2012

LCA Elements

Definition of boundaries

Slide 53/61 JESS 2 / 2012

LCA Procedure

- Analysis of all process steps involved
- Cumulation of all specific emission and impact factors, i.e. kg CO₂ / kWh energy kg CO₂ / kg of building material kg SO₂ / kWh energy etc.
 Detail given by inclusion or omission of secondary, tertiary etc.
 - sources (system boundary).

Goal: Comparison of base case with alternative variants

Well-to-Wheel Analysis (1)

CO₂ equiv. per 100 km

FC vehicle, various hydrogen production paths, base case: Diesel

Well-to-Wheel Analysis (2)

Fossil fraction of energy

FC vehicle, various hydrogen production paths, base case: Diesel

Total Balance of Conversion: kg CO₂ / kWh

Internal versus External Costs examples for vehicle traffic

Internal costs:

- costs of production and delivery of vehicles and fuels
- taxes and levys
- market price (as a sum of the above plus company profit)

External costs

- costs caused for the society, but not attributed or attributable to single products or services
- health services due to environmental pollution
- health and other services due to noise pollution
- public services in safety, accident prevention etc.
- general costs of land use, rain run-off management etc.

Including External Costs

External Costs of Electricity Generation

source: DLR Slide 60/61 JESS 2 / 2012

Thermodynamics & System Analysis

Thanks for your Attention!

Any Questions?

Thermodynamics & System Analysis

Slide 61/61 JESS 2 / 2012