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Introduction

* Ideas on chemical inhibiting of hydrogen — air detonations
were put forward long ago at testing piston engines operating on hydrogen.

» As detonation suppression additives, methane, iodine, 10dine hydrogen,
organic 1odeeds, as well as various metalorganic and nitrogen-organic
compounds were considered.

 The effect of detonation suppression additives on the detonation properties of
hydrogen — air mixtures were explained mostly by the low-temperature
reactions of chain termination.

 The search for effective detonation suppression additives has been revived
recently in view of new developments in hydrogen technologies, in
particular fuel cells.

* Recent studies demonstrate that small additives of unsaturated
hydrocarbons to hydrogen — air mixtures can inhibit detonations due to
termination of high-temperature chain-branching oxidation reactions.

e 1D Zel’dovich theory of detonability limits was proved to provide satisfactory
quantitative predictions for detonability limits depending on mixture composition,
initial temperature and pressure, as well as the percentage of inert diluents in
hydrogen — air mixture.



Objective

The objective of this work 1s to apply the 1D theory of
detonability limits to the problem of chemical inhibiting of
hydrogen — air detonations by small additives of effective gaseous
detonation-suppression agents.



Theoretical studies



Structure of 1D steady-state detonation
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Governing equations

Zeldovich (1940), Rybanin (1966), Frolov (1986)
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Boundary conditions
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Validation
of hydrogen oxidation mechanism
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Reaction mechanism:
inhibitor C3H6 (propylene)

+H
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Solution algorithm:
shooting technique
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Limiting tube diameter, mm
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Effect of inhibitor on ignition delay
of hydrogen — air mixture
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Limiting tube diameter, mm

Detonability limits:
hydrogen — air — inhibitor (C:;Hs)
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1D Near-limiting detonation structure:
22%(vol.) H, — air — inhibitor (C;Hs)
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Experimental studies
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Schematic of experimental setup
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e Mixtures: 33.8% H2 + air (+ CsHs)
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Time — distance diagram:
33.8% H: + air
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Time — distance diagram:
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Time — distance diagram:
33.8% H: + air + 2.5% (iso-CsHs or CsHbe)
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* iso-butylene vs. propylene: effect of
molecular structure

* iso-butylene: easier and quicker
detonation decay (n-bond)

e predicted limiting tube dianreter for
H: — air — 2.5% C3He i
* high sensitivity of detomatior

“g0 —no go” conditions to governing
parameters

Azatyan et al. (2007), Frolov et al. (2009)



Conclusions

Mathematical modeling of chemical inhibiting of hydrogen — air detonations
has been performed.

1D detonation model with detailed chain-branching reaction mechanism of
hydrogen oxidation describes satisfactorily all main effects of chemical
inhibitors on the detonation.

Calculations indicate that chemical inhibitors narrow the concentration limits
of detonations and increase the limiting tube diameter, in which the steady-
state detonation propagation is still possible.

Despite the inhibitors introduce additional exothermal reactions and additional
hydrogen oxidation reactions, their presence results in detonation suppression.

Inhibitors lead to the deceleration of the overall reaction process which manifests
itself by increasing ignition delay time and decreasing concentrations of
atomic hydrogen — main carrier of chain-branching reaction.

The effect of inhibitors is mainly determined by the specific dependence of the
rate of chain-branching reaction on temperature which differs considerably
from the regular Arrhenius dependence.
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