Chemical inhibiting of hydrogen-air detonations

Sergey M. Frolov

Semenov Institute of Chemical Physics Moscow, Russia

Outline

- Introduction
- Theoretical studies
- Classical 1D approach (ZND-model)
- Detailed reaction mechanism
- Reaction mechanism for inhibitor
- Solution algorithm
- Results of calculations for H2 air
- Results of calculations for H2 air inhibitor
- Experimental studies
- Experimental procedure
- Experimental results for H2 air
- Experimental results for H2 air inhibitor
- Conclusions
- Acknowledgments

Introduction

- Ideas on chemical inhibiting of hydrogen air detonations were put forward long ago at testing piston engines operating on hydrogen.
- As **detonation suppression additives**, methane, iodine, iodine hydrogen, organic iodeeds, as well as various metalorganic and nitrogen-organic compounds were considered.
- The effect of detonation suppression additives on the detonation properties of hydrogen air mixtures were explained mostly by **the low-temperature reactions of chain termination.**
- The search for effective detonation suppression additives has been revived recently in view of new developments in **hydrogen technologies**, in particular fuel cells.
- Recent studies demonstrate that small **additives of unsaturated hydrocarbons to hydrogen – air mixtures** can inhibit detonations due to termination of high-temperature chain-branching oxidation reactions.
- **1D Zel'dovich theory of detonability limits** was proved to provide satisfactory quantitative predictions for detonability limits depending on mixture composition, initial temperature and pressure, as well as the percentage of inert diluents in hydrogen air mixture.

Objective

The objective of this work is to apply the **1D theory of detonability limits** to the problem of chemical inhibiting of hydrogen – air detonations by small additives of effective gaseous detonation-suppression agents.

Theoretical studies

Structure of 1D steady-state detonation

Variation of mixture state

Governing equations

Zeldovich (1940), Rybanin (1966), Frolov (1986)

Reynolds number

+ Chemical kinetics

Boundary conditions

Validation of hydrogen oxidation mechanism

Exp. Fukutani et al. (1999)

Temperature range of interest T > 1200 K

Reaction mechanism: inhibitor C3H6 (propylene)

$$C_{3}H_{6} + H(+M) \rightarrow C_{3}H_{7}(+M)$$

$$k = 1.3 \cdot 10^{10} \cdot \exp\left(-\frac{787.87}{T}\right) \quad (1, \text{ mole, s}), \text{ Tsang (1991)}$$

$$C_{2}H_{7} + O_{2} \rightarrow C_{2}H_{6} + HO_{2}$$

 $k = 1.26 \cdot 10^8$ (l, mole, s), Warnatz (1984)

Solution algorithm: shooting technique

Detonation velocity D is the problem eigenvalue

Detonability limits: hydrogen - air

1D Detonation structure: 25%(vol.) H₂ - air

Effect of inhibitor on ignition delay of hydrogen – air mixture

t, μs

t, μs

Detonability limits: hydrogen – air – inhibitor (C₃H₆)

$$P_0 = 1 \text{ atm}$$

 $T_0 = 298 \text{ K}$

- Narrowing of detonability limits (even in wide tubes!)
- Increasing the limiting tube diameter
- Shifting the minimum of U-curve

1D Near-limiting detonation structure: 22%(vol.) H₂ – air – inhibitor (C₃H₆)

Detonation velocity deficit without (0%) and with (1%) C₃H₆

Experimental studies

Detonation tube at Institute of Structural Macrokinetics

Schematic of experimental setup

Time – distance diagram: 33.8% H₂ + air

Azatyan et al. (2007)

Time – distance diagram: 33.8% H₂ + air + iso-C₄H₈

Azatyan et al. (2007)

Time – distance diagram: 33.8% H₂ + **air** + **2.5%** (**iso-C**₄H₈ **<u>or</u> C₃H₆)**

Conclusions

- **Mathematical modeling** of chemical inhibiting of hydrogen air detonations has been performed.
- 1D detonation model with detailed chain-branching reaction mechanism of hydrogen oxidation describes satisfactorily all main effects of chemical inhibitors on the detonation.
- Calculations indicate that chemical inhibitors **narrow the concentration limits of detonations and increase the limiting tube diameter**, in which the steadystate detonation propagation is still possible.
- Despite the inhibitors introduce additional exothermal reactions and additional hydrogen oxidation reactions, **their presence results in detonation suppression**.
- Inhibitors lead to the deceleration of the overall reaction process which manifests itself by **increasing ignition delay time and decreasing concentrations of atomic hydrogen** main carrier of chain-branching reaction.
- The effect of inhibitors is mainly determined by the **specific dependence of the rate of chain-branching reaction on temperature** which differs considerably from the regular Arrhenius dependence.

Acknowledgments

• The author would like to thank **Prof. Azatyan V.V.** for providing the inhibiting mechanism of n-propylene and experimental data, and **M.Sc. Medvedev S.N.** for performing calculations and data processing.

• This work was supported by the Russian Foundation for Basic Research (grant 08-08-00068).