Physics and Applications of Gaseous Detonation

Toshi FUJIWARA,
FLab, Nagoya 465-0093
also Department of Aerospace Engineering,
Nagoya University, Nagoya 464-8603, Japan
$4^{\text {th }}$ European Summer School on Hydrogen Safety, Corsica, France, September 6-16, 2009

Introduction

"Detonation phenomenon" generates high pressure and temperature, and is basically uncontrollable, compared with conventional "flames". In the past, direction of research has been prevention of and protection from hazard.

Recently, the trend to control detonation propagation has emerged, utilizing its high-power and high-density energy for "propulsion system of air/space planes".

Oblique Detonation Wave Engine: ODWE
Qam Accelerator: RAMAC
Qulse Detonation Engine: PDE

Purpose

To improve efficiency of PDE :
OIncrease thrust by attaching a diverging nozzle to engine exit.
OPromote early DDT (Deflagration-Detonation Transition) by setting "obstacles" in upstream portion of PDE.

2-Dimensional Numerical Analysis of Detonation Propagation in Variable-Cross-Section Channels

OEstablish a 2-dimensional numerical code in a generalized coordinate system.

OStudy basic mechanisms of detonation propagation in variable-cross-section channels where the cross sectional area increases at a constant gradient.

Numerical Method

OGoverning equations : 2-dimensional "Navier-Stokes equations" based on a generalized coordinate system.
-Chemical reaction model: 2-step chemical model by Korobeinikov-Levin.
ONumerical scheme: 2nd-order-accurate explicit MacCormack-TVD scheme.
-Computational domain Moves together with propagating detonation front, always within 3 cm -length in x-direction.
-Gas mixture: $2 \mathrm{H}_{2}+\mathrm{O}_{2}+7 \mathrm{Ar}$. Olitial condition: $298.15 \mathrm{~K}, 0.5 \mathrm{~atm}$.

Results

Effect of Grid Convergence on Detonation Characteristics

3 different grids have been tested to a 3 cm -width straight cannel.

	Grids	Mesh size	Cell size	Ratio of cell size to experimental value
Grid 1	200×200	$150 \mu \mathrm{~m}$	0.75 cm	1.53
Grid 2	300×300	$100 \mu \mathrm{~m}$	0.6 cm	1.22
Grid 3	450×450	$67 \mu \mathrm{~m}$	0.6 cm	1.22

Experimental cell size: 0.49 cm (Strehlow et al.)
OGrid selection affects detonation cell size.
OSubsequent analyses are performed using a grid where maximum mesh size $=100 \mu \mathrm{~m}$.

Results

Cell Pattern for No Wall Inclination; $0=0$ deg.

-Grid 2: 300×300 (mesh size $100 \mu \mathrm{~m}$).
-Cell size $=0.6 \mathrm{~cm}$ cell number=5, uniform distribution.
-Detonation propagates stably.

Results

Cell Pattern for Wall Inclination; $\theta=3 \mathrm{deg}$.

-Cell size gradually increases due to expansion effect, keeping the same cell number (no generation or annihilation).

OCell size increases from 0.6 cm up to 1.1 cm at 25 cm passage; cell number $=5$ (unchanged).

Results

Cell Pattern for Wall Inclination; $\theta=5 \mathrm{deg}$.

Grid: 300×800.

- Detonation propagates stably.
-Cell size for $\theta=5$ deg. is larger than the one for $\theta=3$ deg., while no generation/annihilation occurs.

OCell size becomes 1.7 cm at 30 cm passage; cell number=5 (unchanged).

Results

Cell Pattern for Wall Inclination; $\theta=10 \mathrm{deg}$.

Cell Pattern for Wall Inclination; $\theta=10 \mathrm{deg}$.

OAt 12 cm , new triple points are formed, due to (1) mutual collision at center and (2) collision with wall.

OAt 20 cm , a new cell structure prevails; cell number $=12=2 \mathrm{x}$ former cases; the cell structure is still non-uniform.

- At $\gg 20 \mathrm{~cm}$, non-uniformity is source of new cells formation-Cell size adjusts to finer, cell number grows up to 15 at $\mathrm{x}=30 \mathrm{~cm}$ (cell size $=0.8 \mathrm{~cm}$).

Entire transition process is irregular throughout propagation; it will be interesting to see further development.

Results

Detonation Velocity is Slightly Changed

Detonation velocity D becomes slightly lower and more fluctuating, for increased wall inclinations θ.

Conclusion

Using a generalized 2 -dimensional scheme, the effect of increasing channel cross section is studied, for 4 different fan-shaped channels; $\theta=0,3,5$ and 10 degs.
-A larger wall inclination (θ) generates greater effects of flow expansion, where the cell size simply increases for $\equiv 5 \mathrm{deg}$. For $\not \equiv 10$ deg, detonation propagation becomes irregular, but still does not extinguish; cell size adjustment is observed.

OPropagation velocity of detonation (1) is only slightly "lowered" and (2) "fluctuates" more, for increased wall inclinations, due to flow expansion effects.

