Detonation Resonator as an Air-Breathing Thruster

Toshi Fujiwara: Nagoya University and FF Laboratory

High-Frequency Levin-Tarasov Detonation Resonator (by V. A. Levin et al, 2001): 25kHz Operation

Figure 3 General schematic of the PDE TD: 1 - resonator cavity; 2 - annular nozzle; 3 - reactor

Applicability of Detonation Resonator to Pulse Detonation Engine

Advantages:

- High Frequency > kHz

 → Close to Continuous Operation and Continuous Fuel Supply
- Valve-less for Main Combustor/Cavity
- High-Speed Jet Exhaust without Nozzle

Parameters changed in Numerical Simulations

(1) Cavity Diameter: D = 7, 14, 28cm

 (2) Reaction Rate of Gas Mixture:
 Activation Energy T_a, Frequency Factor k_a, Heat of Reaction Q

(3) Length of Cylindrical Nozzle/Ejector: L = 1, 2, 3, 4cm

Numerical Simulations for Fictitious Gas Mixtures:

(1) High-temperature gas mixture or
(2) Low-temperature HC + hightemperature air mixed at supply throat
(3) Not unrealistic chemical parameters

Geometry of detonation resonator: Oscillations of physical quantities are monitored at two axial Locations A (wall center) and C (hemisphere center). A cylindrical nozzle/ejector of length L = 1cm – 4cm is attached.

Table 1 Parameters and Calculated Results for B-Series (D = 7cm, L = 1cm)

Case	Heat of reaction; Q (MJ/kg)	Rate Constant; k _a (m ³ /kg.s)	Injected Gas Temperature ; T ₀₀ (K)	Resonance Frequency ; f (kHz)	Specific Impulse; I _{sp} (sec)
B-0	2.10	0.50e+9	293.15	3.96	1,450
B-1	2.10	0.50e+9	350.00	4.70	
B-2	2.80	0.50e+9	293,15	4.43	1,310
B-3	2.10	0.25e+9	293.15	4.11	1,560

Mass Flow Rate

History of Mass flow Rate of Injected Gas Mixture for Case B-0: D = 7cm, L = 1cm, 1 Cycle = 0.25msec.

Pressure History at Center of Cavity for Case B-0.

Pressure History at Wall Center of Cavity for Case B-0.

Comparison between Pressure Histories at Cavity Center and Wall Center

Explosion or detonation initiation starts at cavity center: (1) Peaks are earlier by 100-200microsec (2) Peaks are higher

Detonation occurs between t = 1.42 - 1.48msec for Case B-0 (within 60microsec), after slow reaction.

Detonation occurrence for Case B-0 during t = 1.420 - 1.440msec (total 20microsec): Pressure distribution

Pressure Distribution

Heat Release Rate

Observation during t = 1.170 – 1.240 msec

Propagation of detonation: t = 1190 - 1220microsec = about 20microsec, giving the detonation velocity = 1750m/sec.

Values Utilized for Calculation C-Series of Cavity Size D = 14cm, L = 1cm

(1) Activation Energy: 8000K (Case C-2), 9000K (Case C-3)

(2) Injected Gas: $T_{00} = 293.15$ K

(3) Calculated Ignition Temperature = 571.33 K, defined by Ignition Delay Time 0.1 ms

(4) C-J detonation:C-J detonation velocity = 1724.74 m/sMach number of C-J velocity = 5.1203

(5) Induction length = $14.245 \mu m$

History of Thrust for Case C-2: D = 14cm, L = 1cm, T_a = 8000K. Resonant Cycle Time T= (5.5-0.8)/10 =0.47msec \rightarrow Frequency f = 2kHz

Mass Flow Rate of Gas Mixture Injected into Resonator for Case C-2. D = 14cm, L = 1cm. Intermittency is caused by breakdown of choking condition in supply throat.

Pressure History at Wall Center for Case C-2

Pressure History at Cavity Center for Case C-2

Mass Flow Rate of Gas Mixture Injected into Resonator for Case C-3: Weak Oscillation

Series-D Calculations (1) D = 7cm(2) Nozzle/ejector length: L = 2cm-steady resonant detonation, L = 3cm-intermittent galloping detonation, L = 4cm-initial detonation followed by no continuation

(3) Other parameters: standard conditions

History of Thrust for Case D-1 (Nozzle Length L=2cm).

Mass Flow Rate of Gas Mixture Injected into Resonator for Case D-1 (Nozzle Length L=2cm).

Pressure History at Wall Center of Cavity for Case D-1 (Nozzle Length L=2cm)

History of Thrust for Case D-2 (Nozzle Length L = 3cm).

Mass Flow Rate of Gas Mixture Injected into Resonator for Case D-2 (Nozzle length L = 3cm).

Pressure History at Wall Center of Cavity for Case D-2 (Nozzle Length L = 3cm)

Series-E Calculations

Numerical Analysis for D = 28cm Cavity:

- (1) Using the standard conditions
- (2) Initial ignition generated only a flame having slow burning velocity; no detonation
- (3) There were always small-amplitude pressure oscillations, probably due to acoustics

Conditions to Widen Resonance Range: Conjecture

- (1) A large cavity D = 28cm failed to generate the resonant detonation.
- (2) Caused by inability of injected gas mixture to reach the cavity center due to **insufficient purging** of burnt gas from the previous cycle.
- (3) The present method of supplying combustible gas mixture only from periphery may have a limit.
- (4) Gas mixture can also be supplied from wall surface or from cavity center, in order to overcome the above difficulty and also to have easier ignition.

Conclusion

- (1) Physics of detonation resonator is well revealed, for complicated gasdynamics
 - (2) Resonant range is widened
 - (3) Effects of parameters are found out
 - (4) A wider resonant range of parameters may be acquired
- (5) Realistic gas mixture must be tested as next goal