Presentation Start

Jay Keller, Sandia National Laboratories

Topical Lecture European Summer School on Hydrogen Safety

September 7-16, 2009

6/15-19/2009; 2

Historical Development of C&S for Hydrogen Infrastructure

Initial approach by International Code Council ICC (~2003) was to adapt C&S for hydrocarbon fuels to hydrogen

- Basis for origin of C&S for other fuels was unknown; likely based simply on experience and expert opinion
- Lack of a technical basis prevented modification for hydrogen applications

Current approach is to use engineering models and correlations based largely on DOE funded research to provide basis for hydrogen C&S

- C&S based purely on technical data resulted in often unacceptable requirements for hydrogen systems (unrealistic separation distances)
- Quantitative Risk Assessment (QRA) must be included
 - QRA accounts for the probability of an event occurring
 - QRA can be used to identify risk drivers and mitigation strategies

Sandia Nationa Laboratories

➡ Hydrogen C&S need a traceable technical basis:

- perform physical and numerical experiments to quantify fluid mechanics, combustion, heat transfer, cloud dispersion behavior
- develop validated engineering models and CFD models for consequence analysis
- use quantitative risk assessment for risk-informed decision making and identification of risk mitigation strategies

Provide advocacy and technical support for the codes and standards change process:

- > consequence and risk: HIPOC, NFPA (2, 55, 502), ISO
- international engagement:
 - HYPER (EU 6th Framework Program), Installation Permitting Guidance for Hydrogen and Fuel Cell Stationary Applications
 - ISO TC197, WG11, TG1 on fueling station separation distances
 - IEA Task 19 Hydrogen Safety, recommended analysis practices
 - Global Technical Regulations, fuel system safety

Separation Distances

- E C
- Specified distances between a hazard source and a target (e.g., human, equipment, structures, other hazardous materials, ignition sources) which will mitigate the effect of a likely foreseeable incident involving the hazard source that results in an acceptable level of risk to the public and prevents a minor incident escalating into a larger incident
 - Current distances do not reflect high pressures (70 MPa) being used in refueling stations
 - Documented basis for current distances not found
- ⇒ Several options possible to help establish new separation distances
 - Subjective determination (expert judgment)
 - Deterministically determined based on selected break size (e.g., 20% flow area)
 - Based only on risk evaluation as suggested by the European Industrial Gas Association (IGC Doc 75/07/E)
 - Risk-informed process that combines risk information, deterministic analyses, and other considerations to make decisions

Hydrogen installation to impose no greater risk -- "Just as safe or safer as the current HC infrastructure"

Use of a risk-informed process is one way to establish the requirements necessary to ensure public safety

- Endorsed by Fire Protection Research Foundation ("Guidance Document for Incorporating Risk Concepts into NFPA Codes & Standards")
- Comprehensive QRA used to identify and quantify scenarios leading to hydrogen release and ignition
- Accident prevention and mitigation requirements identified based on QRA
- Results combined with other considerations to establish minimum code and standard requirements needed for an established risk level

Human injury or fatality

- Individual risk frequency that an average unprotected person, located at most exposed location, is killed or injured due to an accident
- Societal risk frequency that multiple people within an area are killed or injured due to an accident (typically represented on an FN curve)

➡Others

- Economic loss typically expressed in terms of loss value (lost income and replacement cost)
- Environmental damage can be expressed in terms of time required to recover damage to ecosystem

Individual fatality risk deemed most appropriate for establishing generic code requirements

Sandia National Laboratories

Risk Exposed Persons

➡ Public – people located outside the facility boundary ➡ People living and working near the facility People visiting or traveling near the facility \Rightarrow Customers – people using the facility Limited exposure period Facility operators – personnel involved in operation, inspection, and maintenance of the facility Generally assumed these people accept higher risk levels than for customers and outside public **Risk to a person at the lot line was**

selected for use in the risk analysis

Radiation Heat Flux

Potential for harm or facility damage is a function of heat flux level and exposure time

- ⇒ Wide variation in criteria (assumes exposed skin):
 - > 1.6 kW/m² no harm for long exposures
 - > 4 to 5 kW/m² pain for 20 second exposure
 - > 9.5 kW/m² -Second degree burns within 20 seconds
 - 12.5 to 15 kW/m² 1% lethality in 1 minute, piloted ignition of wood
 - 25 kW/m² 100% lethality in 1 minute, injury within 10 seconds, ignite wood (long exposure)
 - 35 to 37.5 kW/m² 1% lethality in 10 seconds, damage steel structures (long exposure)

Unintended release behavior

- Momentum dominated flows
- Buoyancy dominated flows
- ➡ Effect of barriers on:
 - > Flame impingement, Radiation, Pressure effects
- ➡ Ignition
 - Spontaneous ignition
 - Flammability limits (flame stability)
 - Quiescent flows, Turbulent jets, Detonation, Explosion
- Quantitative risk assessment

Presentation End