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•
 

Consequences of an explosion:

▫
 

Blast
▫

 
Fire

▫
 

Toxicity
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•
 

Given an accidental scenario, what is the 
volume of explosive mixture?

▫
 

A fluid mechanics problem of dispersion and 
turbulent mixing
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•
 

Given a volume of explosive gas mixture 
(within the flammability limits), what is 
the blast pressure?

▫
 

Depends on the burning rate (flame speed)
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•
 

What is the turbulent flame speed for 
initial and boundary conditions?

▫
 

Central problem in explosion risk assessment
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Explosion Dynamics

•
 

Chemical thermodynamics (stoichiometry, 
energetics)
•

 
Chemical kinetics (reaction mechanisms, 
rates of reactions)
•

 
Combustion (ignition, flame propagation 
and flammability limits, quenching, MESG)
•

 
Gas dynamics (detonation waves, 
initiation, limits, DDT)
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Chemical Thermodynamics

•
 

Equilibrium species and concentrations in 
products

•
 

Energetics of a reaction (for a given path, 
i.e., constant volume, pressure across a 
combustion wave)
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Stoichiometry

•
 

Relationship between the composition of 
the reactants and products. 

▫
 

Atoms are conserved in a chemical reaction
▫

 
Stoichiometric mixture –

 
just the right amount of 

oxidizer for the given fuel
▫

 
Assume complete combustion 


 
C→CO2

 

, H→H2

 

O, S→SO2

 

,  N2

 

→N2
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•
 

e.g.
 
H2

 

+ ½
 

O2

 

→
 

H2

 

O
H2

 

+ ½
 

(O2

 

+3.76N2

 

) →
 

H2

 

O +1.88N2

H2

 

+ 2.38 air →
 

H2

 

O +1.88 N2

•
 

Percentage  by mole     66.6% H2

 

, 33.4% O2

•
 

Percentage by weight   11.1 % H2

 

,88.9% O2

•
 

Percentage by mole      29.6% H2

 

, 70.4% air
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Fuel-air ratio

FA =

e.g. H2

 

+ ½
 

(O2

 

+3.76N2

 

) →
 

H2

 

O +1.88N2

FA = = 0.42

•
 

by mass  2 H2

 

+ 68.64 air 

FAmass =
 

= 0.029

air of moles
fuel of moles

38.2
1

64.68
2
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Equivalence Ratio

stoichiometric composition

H2

 

+ 2.38 air →
 

H2

 

O +1.88 N2

fuel lean

fuel rich

tricstoichiome

mixture

(FA)
(FA)



1

1

1
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Enthalpy of a Compound

•
 

enthalpy of formation


 
enthalpy change when a  compound is formed 
from its stable elements at standard 
reference state, i.e. 298K, 1 atm.

•
 
= 0 for stable elements at reference 

state
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Enthalpy (heat) of Reaction 
•

 
heat exchange when reactants go to products at constant 
pressure and temperature

•
 

temperature of products in an adiabatic constant pressure 
process

fuel of moles
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~ reactantsproducts
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Constant Volume Explosion Pressure

•
 

pressure rise in a constant volume adiabatic 
process
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Combustion Wave

•
 

Conservation law
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Chemical Kinetics

•
 

Deals with reaction mechanisms (details 
steps) and the rates of chemical reactions
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Reaction Mechanisms

•
 

Global 
▫

 
Fuel + Oxidizer →

 
Products

•
 

Elementary
e.g.  H2 + ½

 
O2 →

 
H2O    (global)

H2 + M →
 

H + H + M
O2 + M →O + O + M
O + H2 →

 
OH + H

H + O2 →
 

OH + O
H2 + OH →

 
H2O + H

etc.
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Reduced mechanisms

•
 

A few important intermediate steps to 
represent the overall reaction

▫
 

e.g.  H2

 

– O2



 
Chain initiation: H2

 

+ O2

 

→H + HO2



 
Main branching: H + O2

 

→
 

O + OH


 
Main heat release: H2

 

+ OH →H2

 

O + H


 
Chain termination: H + O2

 

→
 

HO2



 
Secondary chain termination:

 
HO2

 

+ HO2

 

→
 

H2

 

O2

 

+O2 


 
Secondary chain branching: H2

 

O2

 

→
 

OH + OH
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Reaction Rate
•

 
Unimolecular

•
 

Bimolecular

•
 

Termolecular

B A  k

]A[]A[ k
dt

d


C  BA k

]  A][B[]B[]A[ k
dt

d
dt

d


D C BA k

A][B][C][]C[]B[]A[ k
dt

d
dt

d
dt

d

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•
 

k →
 

rate constant fit to a law of the form

▫
 

Can also fit global reaction to a global rate 
constant.


 
e.g. Hydrocarbon fuel  CnHm  
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•
 

Since for high activation energy the temperature 
dependence is controlled by the exponential 
term, the power law dependence is dropped, i.e.

•
 

The exponential form of the rate law is referred 
to as the Arrhenius rate law. 
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Explosion (Rapid Runaway 
Reactions)

•
 

Can be a consequence of rapid chain branching 
reaction

•
 

Thermal runaway is a result of strong 
temperature dependence of reaction rate. 
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Explosion Limit
•

 
Reaction rates are temperature and pressure 
dependent. There exist a critical state that 
defines if runaway reactions will occur or not

•
 

Represented by a curve in the thermodynamic 
state (p,T) plane bounding regions of “explosion”

 and “no explosions”.
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•
 

Classical example is the Z-shaped curve 
for the explosion limit of  H2

 

– O2
 

reaction

•
 

For a fixed temperature, “explosion”
 

or 
“no explosion”

 
depends on pressure
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Explosion limits for  hydrogen-oxygen mixture.
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•
 

Consider a fixed temperature of 500°C

▫
 

For p ≤
 

1.5 torr, no explosion 


 
diffusion losses to wall ( 1st limit) 

▫
 

For 1.5 torr ≤
 

p ≤
 

50 torr, explosion occurs


 
chain branching dominates

▫
 

For 50 torr ≤p ≤3000 torr, no explosion 


 
Three body recombination chain terminating reactions 
dominate over chain branching
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▫
 

For p ≥
 

3000 torr, explosion occurs


 
Formation of  HO2

 

+ H2

 

→
 

H2

 

O2

 

+ H  dominates over 
diffusion losses of HO2

▫
 

For T ≥
 

580 °C, explosion occurs for all pressures


 
Dissociation of H2

 

O2

 

is important
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Homogeneous Adiabatic Constant 
Volume Thermal Explosion

•
 

First law  

, consider n=1

Qq
dt
dU
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•
 

Integrating numerically from To to Tmax
▫

 
e.g.: To = 800 K, Tmax = 2000 K,  Ea = 20 kcal/mol, 

R = 1.98 cal/(mol K) 

▫
 

Results
 

: 


 
Very slow initial temperature rise



 
Very rapid rise in T where T ≈

 
1100 K



 
Very rapid decrease in fuel when T≥

 
1100K
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Temperature, concentration and reaction rate profile.
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•
 

Induction period i

 

→
 

negligible duration of 
temperature rise

•
 

Reaction time R

 

→
 

period of rapid 
temperature rise to Tmax

•
 

Strong dependence of on Ea

e.g.         0.3 for Ea = 20kcal

0.00035 for Ea 
 

40kcal

i

R





i

R





i

R



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Thermal Runaway (Ignition)

•
 

Reaction rates are finite at finite 
temperatures, without losses all explosive 
mixtures will eventually undergo runaway 
reaction

•
 

Runaway reaction occurs when rate of 
heat production due to reaction exceed 
rate of heat loss
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•
 

First law

▫
 

L.H.S.  Rate of change of internal energy per unit volume

▫
 

Rate of energy release per unit volume

▫
 

Rate of heat loss per volume

LR qq
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V
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T
 

<T1
T

 
>T1

LR qq  
RL qq  

•
 

At 1, stable if
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•
 

At 2, unstable  T<T2

 

,

system  →
 

1

T>T2

 

, runaway 

T>T*,
 

ignition

T* -
 

ignition temperature

RL qq  

LR qq  

LR qq  
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•
 

At critical ignition point * (T = T*)
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•
 

Dividing the two equations yield

•
 

Solving for T*

•
 

Take the negative root
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•
 

In general 

•
 

First approximation 

•
 

Second approximation
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•
 

Given a heat release curve and the size 
of the volume there exist a critical value 
of  To when runaway occurs
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•
 

Given a To
 

and heat release curve        
there exist a critical volume above which 
runaway occurs 

RQ

V
A

dT
Qd L 

.
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•
 

Assume spherical volume
•

 
From 

•
 

Adiabatic flame temperature

3

3
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Minimum ignition energy
•

 
External energy to heat flame kernel to 
ignition temperature T*≈Ta

•
 

Minimum ignition spark energy determined 
experimentally 
▫

 
Circuit parameter, electrode configuration, etc.

▫
 

Standardized ASTM E582-07

)(
3

4
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Scheme of apparatus for determining minimum ignition energies for 
electric-spark ignition
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Minimum ignition energies of combustible-air mixtures in relation to the 
stoichiometric percentage in air.
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Quenching distance dq

•
 

Minimum tube diameter (or gap) in which self-
 sustained flame propagation is possible

•
 

Balance between heat production by chemical 
reactions in flame zone and losses from 
boundaries of reaction zone, i.e.

•
 

δ
 

→Laminar flame thickness

•
 

Different methods used to determine quenching 
distance 

LR qq  
 ~~d *

q r
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•
 

Flash back method

•
 

Tapered tube

•
 

Flanged electrode
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Minimum ignition energies for free and glass-flanged electrode tips 
as function of electrode distance. 
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Minimum ignition energies for glass-flanged electrode tips as function 
of electrode distance and pressure
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Minimum ignition energies and quenching distances for hydrogen-oxygen-

 inert gas mixtures at atmospheric pressure. O2

 

/(O2

 

+ inert gas) = 0.21

49



Quenching distance for various flames at 1 atmosphere for stoichiometric 
mixtures at room temperature.
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Comparison of quenching distances from different methods
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MESG (maximum experimental 
safe gap)

•
 

Maximum gad in which explosion can be 
transmitted from one chamber to another 
standard apparatus used 20 ml vessel 
European standard 8 L sphere

•
 

Westerburg apparatus 
▫

 
(Underwriter’s lab)
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20 ml explosion vessel.
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8 L explosion vessel. (SMRE 25.4 mm (1 inch) Flanges, Assembly: 4 
or 6 G Clamps
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Flammability Limits

•
 

Conditions that define whether self-
 sustained flame propagation is possible or 

not

▫
 

Conditions :


 
Thermodynamic state (p,T)



 
Boundary condition (tube diameter)



 
Composition (equivalence ratio)



 
Percentage of inert diluent
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•
 

Physics involved in flammability limits –
 very diverse (heat losses, flame stretch, 

buoyancy, stability)

•
 

In general, flammability limits are defined 
for fuel composition, lean and rich limit
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•
 

Effect of buoyancy give rise to upward, 
downward, horizontal limits

•
 

Effect of tube diameter resolved by 
choosing a sufficiently large diameter 
where dependence is weak d≥5 cm

•
 

Standard apparatus →
 

Flammability tube 
used by Coward and Jones 1.5m long, 
5cm diameter
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•
 

Closed  explosion vessel also used 
criterion based on achieving some 
arbitrary pressure rise

•
 

Flame stretch and thermo-diffusive 
instability play important role near limits
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•
 

For mixture of different fuels Le Chatelier 
rule is used, i.e.

▫
 

cA ,cB -
 

concentration of fuel A and B of mixture
▫

 
cA

*,cB
* -

 
limiting concentration of fuel A and B 

respectively

1
c
c

c
c

B

B

A

A  
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•
 

Le Chatelier rule is essentially based on 
energetics of fuels.
▫

 
Works for fuels having same physical properties, 
i.e. 


 
molecular weights 



 
diffusivity 



 
reaction rates, etc.
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Combustion in a closed vessel

•
 

Can be used to determine flammability 
limits
•

 
Constant volume explosion pressure →

 energetics of mixture
•

 
Burning velocity
•

 
kg factor for explosion venting design
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•
 

Can derive relationship between p,
,      and S


 

P(t) ,        measured


 
S is the burning velocity and  can be 
determined
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•
 

kg factor is defined as

•
 

A measure of the rate of pressure rise in the 
vessel 

•
 
~ Length scale of the vessel to normalize 

the rate of pressure rise for different size 
vessel 

max
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Explosion Venting

•
 

Reactants (or products) are discharged 
from vessel to limit maximum over 
pressure developed

•
 

Rate of enthalpy vented equal rate of 
chemical energy release

•
 

NFPA Guideline 68 for vent area-volume 
ratio, kg factor
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•
 

Given explosive mixture at given initial 
conditions (p,T, chemical composition, 
etc.), there are two mode of combustion:
▫

 
deflagration

▫
 

detonation

•
 

Product temperature more or less the 
same but combustion rate differs by 104

 times
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Deflagration Wave (Propagating 
Flame)
•

 
Subsonic relative to unburned mixture 
ahead of it

•
 

Expansion wave, pressure drops across 
flame

•
 

Unburned mixture ahead is set into 
motion due to increase in specific volume 
across flame
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•
 

Burning velocity S relative to mixture 
ahead

•
 

Flame speed     relative to fixed 
coordinate system

•
 

If the deflagration is fast, there is a 
precursor shock ahead of flame front

fR
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•
 

Deflagration propagates as a diffusion wave

▫
 

Heat and radical species diffuses from reaction zone 
ahead to effect ignition

▫
 

Burning velocity            -diffusivity            reaction 
time, Scm/s

▫
 

Laminar flame thickness ~1mm  

▫
 

Effect of curvature and stretch on burning velocity

▫
 

Laminar flame unstable-cellular

c

~
t

S 

c
c

1~


t
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•
 

Propagating flame –
 

deflagration 
▫

 
Self accelerate due to positive feed back 
mechanism

•
 

Max deflagration speed ~ ½
 

CJ detonation 
speed

•
 

DDT transition to detonation
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Detonation Wave

•
 

Propagate at supersonic speed relative to 
reactants in front of it

•
 

Compression shock wave that initiate 
chemical reaction via adiabatic 
compression to auto-ignition temperature

•
 

Expansion in reaction zone and products 
(Taylor wave) produce forward thrust to 
derive leading shock front
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•
 

ZND structure (Zeldovich-
 

von Neumann –
 Döring) model of detonation zone –

 
leading 

shock followed by induction zone and reaction 
zone 
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•
 

Chapman-Jouguet detonation →
 

sonic 
velocity of product (relative to the 
detonation)
▫

 
Minimum velocity solution of steady 
conservation laws (tangent of Rayleigh line 
to Hugoniot)
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•
 

Typical stoichiometric mixtures at 1atm, 
298K, DCJ ~1800ms

•
 

Detonation pressure

•
 

A detonation is generally unstable

•
 

Longitudinal instability →
 

Pulsating 
detonation

15~
CJ p
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•
 

Transverse instability →
 

cellular structure

•
 

Detonation cell size measure by smoked foil 
technique

•
 

Useful length scale to characterize detonation 
zone thickness

•
 

Cell size ~ ZND reaction zone length

•
 

Spinning detonation –
 

lowest transverse 
unstable mode in a circular tube. Stationary 
structure with respect to rotating frame fixed 
to spinning head
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(a) Side wall and (b) end-on soot records of a multiheaded detonation

Courtesy of S.B. Murray



Detonability Limits

•
 

Critical conditions that define if self-
 sustained detonation can propagate

•
 

Critical conditions :
▫

 
initial state (p,T), composition, amount of inert 
diluent, tube diameter, nature of tube wall

•
 

Composition limit →
 

given a tube 
diameter, lean and rich limits
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•
 

Given a mixture composition there is a limiting:
▫

 
tube diameter

▫
 

pressure limit (e.g. too low, too high)

•
 

No theory for detonation limit prediction

•
 

Experiment determination lacks an operational 
definition of a limit criterion

•
 

Complex near limit phenomena:
▫

 
Single headed spin, pulsating, galloping detonation, 
etc.
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•
 

Failure mechanism
▫

 
Stable detonation →

 
curvature

▫
 

Unstable detonation →
 

suppressing instability

•
 

Sensitivity of mixture measured by 
detonation cell size λ.

•
 

λ
 

depends on mixture composition, inert 
diluent, initial pressure, etc.
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•
 

Boundary conditions characterized by tube 
diameter

•
 

λ
 

=d may serve as limit criterion for 
spinning detonation
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Direct Initiation
•

 
Formation of detonation from the conditions 
generated by the ignition source directly

•
 

By pass the flame acceleration and pre-
 detonation deflagration stage

•
 

Blast initiation →
 

strong decaying blast wave 
generated by powerful ignition source 
▫

 
high energy spark, exploding wire, condensed 
explosive charge
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Sequence of schlieren photographs of supercritical regime

Lee, J.H. et al. Comb. Flame, 18,1972



•
 

Direct initiation possible if decaying blast 
is of sufficient duration

•
 

Zeldovich criterion  :
▫

 
blast strength > Chapman-Jouguet detonation for a 
duration > induction time

•
 

Propagation distance of black wave (above 
Chapman-Jouguet detonation strength) > 
detonation zone thickness
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•
 

Blast decay characterized by explosion 
length 

•
 

Detonation sensitivity characterized by 
reaction zone thickness (or cell size  λ

 
)

•
 

Zeldovich criterion  →
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•
 

Explosion length scaling for different 
geometry

•
 

Direct initiation also possible by flash 
photolysis, turbulent jet mixing

•
 

SWACER mechanism  →
 

induction time 
gradient to permit energy release in phase 
with shock wave
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Critical Tube Diameter
•

 
Minimum diameter of tube that permits 
planar detonation to diffract to a spherical 
detonation

▫
 

Failure mechanisms
▫

 
Stable detonations → curvature

▫
 

Unstable detonations → suppresses growth of 
instability

•
 

S & M criterion for unstable detonation dc ~ 
13
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Sequence of schliren photographs of a planar 
detonation emerging from a tube into unconfined space 
in (A) the subcritical case and (B) supercritical case

A B

s s

Courtesy of R.I. Soloukin



•
 

Stable detonation  dc >13 λ

•
 

Effect of wall

▫
 

Acoustic absorbing walls
▫

 
Readily deformable wall 

▫
 

Rough wall  →
 

quasi detonation   

λ40~dc 

λ6~cd
λ5~cd

CJDCJ3.0 VVV 
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Transition from Deflagration to 
Detonation DDT
•

 
Flame acceleration phase subsequent to 
ignition

•
 

Mechanisms of flame acceleration:
▫

 
Flame folding

▫
 

Turbulence
▫

 
Instability

▫
 

Acoustic-flame interaction
▫

 
Metastable deflagration
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Typical streak photograph of the abrupt transition to detonation
 

via 
a jet of hot combustion products

Lee et al. 1996



•
 

Mechanisms of flame acceleration 
(continued) :
▫

 
Explosion centers

▫
 

Growth of instability
▫

 
Transverse acoustic amplification

▫
 

Onset of detonation 
▫

 
Effect of wall roughness

▫
 

Obstacles Schelkin
 

spiral
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