
Implementation of

L. F. SHAMPINE

Sandia National Laboratories

Rosenbrock Methods

Rosenbrock formulas have shown promise in research codes for the solution of initial value problems
for stiff systems of ordinary differential equations (ODEs). To help assess their practical value, the
author wrote an item of mathematical software based on one such formula. This required a varmty of
algomthmic and software developments Those of general interest are reported in this paper Among
them is a way to select automatically, at every step, an exphcit Runge-Kutta formula or a Rosenbrock
formula according to the stiffness of the problem. Solving linear systems is important to methods
for stiff ODEs and is rather special for Rosenbrock methods. A cheap, effective estimate of the
condition of the linear systems is derived. Some numerical results are presented to illustrate the
developments.

Categories and Subject Descriptors: G.I 7 [Numerical Analysis]: Ordinary Differential Equations--
~n~t$al value problems; s~ngle step methods; st~ff equatmns

General Terms Algorithms, Theory

Additional Key Words and Phrases: Rosenbrock Methods, FORTRAN Codes

1. INTRODUCTION

T h e m o s t p o p u l a r codes for t h e n u m e r i c a l s o l u t i o n of a s t i f f i n i t i a l v a l u e p r o b l e m
for a s y s t e m of o r d i n a r y d i f f e r en t i a l e q u a t i o n s (O D E s) a r e b a s e d on t h e b a c k w a r d
d i f f e r e n t i a t i o n f o r m u l a s (B D F) . T h e r e is a g r e a t n e e d for a b e t t e r u n d e r s t a n d i n g
of m a n y f u n d a m e n t a l i s sues in b o t h t h e o r e t i c a l a n d p r a c t i c a l t e rms . I n a d d i t i o n
t h e p o p u l a r c o d e s h a v e c e r t a i n w e a k n e s s e s a r i s ing f r o m b o t h t h e f o r m u l a s a n d
t h e i r i m p l e m e n t a t i o n s . T h e s i t u a t i o n h a s s t i m u l a t e d t h e i n v e s t i g a t i o n o f m a n y
a l t e r n a t i v e s to t h e B D F . B e c a u s e r a t h e r few h a v e b e e n d e v e l o p e d so fa r a s to
r e s u l t in i t e m s of m a t h e m a t i c a l so f tware , i t is d i f f icul t to e v a l u a t e t h e t h e o r e t i c a l
a d v a n c e s in t h e f ield.

In so lv ing t h e s y s t e m

y ' = f (x , y) , y (a) given, (1)

t h e i m p l e m e n t a t i o n s of t h e B D F e m p l o y t h e J a c o b i a n m a t r i x fy in a s imp l i f i ed
N e w t o n i t e r a t i o n for t h e e v a l u a t i o n o f t h e i m p l i c i t fo rmulas . T h i s h a s s u g g e s t e d
to m a n y r e s e a r c h e r s t h e p o s s i b i l i t y o f i n c o r p o r a t i n g t h e J a c o b i a n m a t r i x d i r e c t l y
in to t h e fo rmula . One l ine o f d e v e l o p m e n t h a s b e e n t h a t o f R o s e n b r o c k fo rmulas .

This work was performed at Sandla Natmnal Laboratories and was supported by the U.S. Department
of Energy under Contract DE-AC04-76DP00789.
Author's address. Applied Mathematics Research Department, Sandla National Laboratories, Albu-
querque, NM 87185.
1982 ACM 0098-3500/82/0600-0093 $00.00

ACM Transactions on Mathematical Software, Vol. 8, No. 2, June 1982, Pages 93-113.

94 L. F. SHAMPINE

For a differential equation in autonomous form, y ' -- f(y), such methods have the
form

) (I - ~hfy(yo))k, --- h f + Z ark, + hfy(yo) y,,k,,
y~l y--1

i - - 1 , . . . , s
(2)

yl(xo + h) = yo + ~ C,k,.

Here the constants y, a,j, ~,,j, C, define the formula. Each stage k, is obtained by
solving a system of linear equations with the same matrix. The linear combination
of stages advances the solution y0 at x0 to yl at xo + h =- xl.

These formulas are not implicit in the sense that the BDF are and so avoid
some implementation difficulties. It has proved possible to derive Rosenbrock
formulas which in some respects have better stability than the higher order BDF.
A price one pays for these and other advantages is that one must evaluate partial
derivatives of f at every step. Ordinarily it is presumed that these partial
derivatives are either clumsy or expensive to obtain, and for this reason the
popular BDF codes try to evaluate fy as infrequently as possible. This presumption
is by no means always true, so Rosenbrock formulas should not be discarded for
this reason alone. We shall restrict our attention in this paper to the class of
problems for which the partial derivatives of f are convenient to obtain and are
not a lot more expensive than the evaluation of f itself.

Recently Kaps and Rentrop [13] derived some Rosenbrock formulas with
int:ernal error estimators. This was a natural development in view of the history
of explicit Runge-Kutta methods and was an important step in making the
methods practical. The computational results they present suggest that Rosen-
brock methods might be a practical alternative to the BDF. Their paper stimu-
lated the author to develop a piece of mathematical software, DEGRK, based on
a Rosenbrock formula. Here we report some of the algorithmic and software
developments we considered necessary. Although these developments were real-
ized in a particular code, most of the work is generally applicable to Rosenbrock
methods.

At present, codes are clearly intended for stiff or nonstiff problems, but not
both. Deciding the type of the problem is an impossible task for a user. This
author considers the question of how to relieve the user of this decision to be the
most pressing question in the area of ODE mathematical software. Within the
class of problems we postulate here, the matter is relatively simple. We shall
describe how to switch between an explicit Runge-Kutta formula pair and a
Rosenbrock formula pair at any step reliably and economically. The implemen-
tation of DEGRK uses a Fehlberg F(4, 5) pair for the explicit Runge-Kutta
formulas. If the problem is unequivocally nonstiff, the integration by DEGRK is
nearly as efficient as that by RKF45 [21, 22], an effective code for nonstiff
problems based on the F(4, 5) pair. The class of problems for which DEGRK is
intended is easily recognized. In this class there is no particular reason for a user
even to consider the issue of stiffness.

In this investigation we learned that virtually all of the published Rosenbrock
methods have what we consider to be a serious defect for their use in production-

ACM Transactions on Mathematmal Software, Vol 8, No 2, June 1982.

Implementatton of Rosenbrock Methods ° 95

quality codes. A variety of other one-step formulas suffer from the same defect.
We have not seen this matter pointed out before, so we devote some space to it.
It is the main reason we did not implement in DEGRK the formulas published
by Kaps and Rentrop.

Rosenbrock methods solve linear systems which may become ill-conditioned.
We shall present a practical and cheap approximation of the condition which
may be of value for other methods as well.

2. GETTING PARTIAL DERIVATIVES

In the solution of (1) the Rosenbrock methods require evaluation of the partial
derivatives fy and fx. Here we want to indicate some problems for which these
partial derivatives are not inconvenient nor much more expensive to evaluate
than f itself.

Perhaps the first observation ought to be that all the problems of the well-
known test set [8] fall into this class. To be sure, many of the problems are
artificial, but many are not. The supplementary test set of Enright and Hull [15,
pp. 45-66] also falls into the class. Most of its problems arise from a description
of chemical kinetics in a homogeneous solution reacting according to the mass
action law. Chemistry problems of this kind typically fall in our class of interest.

Another class of problems which may well be suitable is the linear problem.
The Jacobian fy must be evaluated every time fis; so it cannot be expensive nor
very inconvenient to provide it. The uncertainty lies in the f, vector. Whether it
is convenient and relatively inexpensive will depend on the problem.

In our experience and in reading the scientific literature, we have seen many
individual problems which were in the class, and many which were not. One
problem [18] which we use as a numerical example in Section 12 is

d--8=(1+~) 1 - (l + N r) X + y + K (l _ y) '

dy l+~ (y }
dO ~ Nf x y + K(1- y) "

Here ~, Nf, and K are {constant) parameters. This problem caught our eye
because the chemical engineers were interested in a range of parameter values.
For some values the problem is not stiff and for others, it is stiff. It illustrates the
convenience of a code which does not ask the user to decide the type.

A very popular option in production codes for stiff problems is for the code to
approximate the necessary Jacobians by numerical differentiation. This makes
life easy for the user, but we do not think this option appropriate to Rosenbrock
methods. One objection is fundamental. The Jacobian is merely an aid to the
BDF codes--they will solve the ODE even if the approximation is terrible, albeit
inefficiently. The Rosenbrock formulas are based on the partial derivatives and
all statements about order and the like depend on an accurate Jacobian. Another
objection is that approximating partial derivatives by numerical differentiation
generally results in a rather expensive evaluation. As a general rule, we cannot
expect the problem to be in our class of interest if fy is approximated numerically.

ACM Transactions on Mathematmal Software, Vol. 8, No. 2, June 1982

96 • L F. S H A M P I N E

3. THE FORM OF THE EQUATION

Theoretical treatments of Rosenbrock methods have taken the differential equa-
tion in autonomous form because it is convenient to avoid the special role of the
independent variable. The research codes have followed the theory in this respect.
Of course many problems do not arise in autonomous form, so users are expected
to convert their problem.

We have chosen n o t to use the autonomous form for a number of reasons. One
is the convenience of the software interface. The typical ODE solver accepts the
form (1) so that users are accustomed to it. Conversion may be fairly described
as a nuisance to the user and leads to questions about an appropriate error
control for the x variable.

When using a Rosenbrock method, the linear systems to be solved constitute
a significant fraction of the work. To reduce linear algebra costs ODE solvers
provide options for various matrix structures. Conversion to autonomous form
obviously affects the structure. We, for example, provide for banded Jacobians in
DEGRK. This structure is lost on conversion. To retrieve it we would have to ask
the user to recognize an unconventional structure for a problem in autonomous
form, or to tell the code he actually started with a banded Jacobian and converted
it. This kind of request is not likely to be popular with users.

The usual conversion to autonomous form adds an equation for x as a new
dependent variable. The eigenvalues of the Jacobian of the augmented system
are those of fy plus an eigenvalue 0. This is not important, but n o r m s may be
more seriously affected. In the L1 norm we use, [I JH1 = max(ll fy II 1, II fx I] 1). We use
the norm of the Jacobian as a bound on the spectral radius to assure stability of
the explicit Runge-Kutta formula, and for other purposes. Increasing the norm
by conversion has a direct, harmful effect.

There are a couple of conceptual objections to the conversion. The typical
BDF code, for example, accepts the form (1), and if the user provides analytical
partial derivatives, he provides only fy. The Rosenbrock methods require fx too.
This matter is concealed when all problems are accepted in autonomous form,
but it is a distinction which could be important. Also, the conversion changes a
linear to a nonlinear problem. It is interesting to note that the famous set of test
problems [8] did precisely this with the Liniger-Willoughby problem D1. The
conversion of linear problems obscures the fact that the Jacobian is immediately
available in analytical form. It is not clear what algorithmic consequences might
follow converting a linear to a nonlinear equation.

It is about as easy to implement the form (1) in a Rosenbrock code as the
autonomous form. In many papers it has been considered obvious that one uses
the autonomous form because of its elegance. For this reason we felt obliged to
state a variety of arguments in support of our decision not to use it in DEGRK.

4 CONDITIONING

The Rosenbrock methods require the solution of linear systems involving matrices
E = I - h 7fy- This is also true of the typical implicit method for the solution of
stiff ODEs, although it is done for a different purpose. It has been frequently
commented that these matrices may be ill-conditioned, but we have not noticed
any arguments to the effect that this must be so. We shall argue this here and
devise a practical measure of the conditioning.
ACM Transac tmns on MathemaUcal Software, Vol 8, No. 2, June 1982.

Implementation of Rosenbrook Methods • 97

The situation is quite different in the cases of a Rosenbrock and, say, a BDF
method. With the BDF and other implicit formulas, linear systems are solved to
obtain successive iterates approximating the result defined implicitly. As de-
scribed in [20, p. 109], this is normally arranged so that one solves for the change
in the previous iterate. Ill-conditioning may slow down the overall iteration
because some digits in the change are spoiled, but as long as a few leading digits
are obtained correctly, the process "converges." With a Rosenbrock formula, the
solutions enter directly (and indirectly through the function evaluations) into the
solution value for the step. The situation for the first stage is especially clear.
With such formulas, inaccurate solution of the linear system leads to inaccurate
solution values. Normally one does not solve stiff ODEs to stringent (relative)
accuracies, so with a reasonable computer word length, this is probably not very
important in practice. However, in this respect Rosenbrock methods and methods
like the BDF appear to differ fundamentally.

By definition cond(E) = [I E [[[[E -1 [[. In general p (M) - [[M][, where p (M) is
the spectral radius of the matrix M. If ~ is an eigenvalue of fy, then 1 - hy~ is an
eigenvalue of E and its reciprocal an eigenvalue of E -1. At this point we need to
put in some information to the effect that the ODE problem is stiff. Stiffness is
not a precisely defined concept. Nevertheless, many workers would be willing to
accept a statement like the following. For a step size h yielding the required
accuracy in the formula, the eigenvalues ~ of the Jacobian fy fall into two classes:

I [hh[<< 1,

II Re(),) ___ 0.

It is further assumed that neither class is empty, and that in class II there is an
eigenvalue),j with [h),~ [>> 1. Notice that we do not take up the conditioning of
a single equation.

The general result

[1 I<1 if Re()`)<0
1 - hy), - -

tells us that no eigenvalue in class II causes p (E -~) to be greater than 1. The
assumption class I is not empty then implies that p (E -~) - 1. -The assumption
about class II says that

p (E) - max[h),k[> [h),j[>> 1.
k

From the general relation of spectral radius to norm, we now conclude

cond(E) --- IIEllllE-' II >- P (E) P (E - ~) >> 1.

Thus if the problem is stiff in the sense we have used, the matrix E = I - h yfy
m u s t be ill-conditioned.

A problem is usually described as nonstiff if all eigenvalues of the Jacobian are
in class I. This ignores the important role of the norm, and in these circumstances
ill-conditioning is not precluded. If the stronger condition that [[hfy [[is rather less
than 1 holds, it is easy to see that in this particular norm, I - hyfy is not ill-
conditioned.

ACM Transactmns on Mathematmal Software, Vol. 8, No. 2, June 1982.

9 8 ° L. F. S H A M P I N E

Because conditioning directly affects Rosenbrock methods and because we
have seen tha t ill-conditioning is to be expected, we considered how to get some
idea of the conditioning. A scheme was devised [6] for L I NPACK [7] which tries
to compute a large lower bound for the condition of a factored matrix. A
computable norm is chosen for II E II which in L I NPACK happens to be the same
one we chose in DEGRK, namely, I] E [I 1. From E v = w one gets

II E - ' II --- II v II/II w II.
The idea of [6] is to select a w judiciously so as to arrive at a large lower bound.
We observed tha t there is a cheaper way to get a large lower bound in our
context. I t is perhaps a little clearer if we scale so tha t

____1 I
E = f , h~ "

Let AN be an eigenvalue of fy of min imum modulus and let v be an associated
eigenvector. Then

and as above

II E - ' II ---
1 - "yh)tN

We shall approximate this lower bound by h~,. For stiff problems, I h ~ y l << 1, SO
this is a good approximation.

We could evaluate II E 111 directly, but this does not seem worth the trouble. In
general

In the particular norm we use, II E Ill - I1 fy I11 is an excellent approximation in the
sense of relative error when h,/II fy I[>> 1.

Finally then

cond(E) _> ~/h[[El[- yhllfy]l,
I1 - h ' y h N I

where the approximation to the lower bound should be excellent if the ODE
problem is stiff in the sense we have used.

The approximate lower bound for the condition is extremely convenient be-
cause all the pert inent quantit ies are computed (cheaply) for other purposes. For
stiff problems it can be expected to provide a useful indication of conditioning.
We have done a variety of experiments comparing the lower bound of L I NPACK
to our approximate lower bound. Experience with the L I NPACK lower bound
seems to show tha t it is comparable to the actual condition. The limited experi-
ments we have done indicate tha t our cheap est imated lower bound is equally
satisfactory in our very special circumstances.

Because of its generality, the L INPACK estimate is more expensive. I t does a
norm computat ion which we avoid by the approximation U E II - II f , I1, available
from other computat ions in DEGRK. It does two extra solutions of linear systems

ACM Transac t ions on Mathematwa l Software, Vol 8, No. 2, June 1982.

Implementabon of Rosenbrock Methods • 99

to form the estimate. The Rosenbrock procedure in DEGRK only does four
solutions of linear systems in the step, so the LINPACK estimate represents a
substantial extra expense. Because one advantage of the Rosenbrock methods
may be their low overhead, the cheaper condition estimate is to be preferred here.

In DEGRK the question of ill-conditioning seems not to be serious. Because of
the low-order formulas implemented and their less than optimal stability at
infinity, severe ill-conditioning appears to be rare. In addition, the low order
makes the code inappropriate for stringent tolerances. We have chosen to restrict
the step size as necessary to ensure that

II hTfy II - 101°

on a machine with about 14 decimal digits. Should such a restriction be imposed
10 times in a run, the integration is interrupted to warn the user of the situation
and to inquire as to whether he wishes to continue.

5. FORMULA PAIRS IN DEGRK

In DEGRK we chose to implement a (4, 5) pair of formulas due to Fehlberg
because they proved very satisfactory in other software, RKF45 [21, 22], we have
written for nonstiff problems. Fehlberg intended that the integration be advanced
using the fourth-order formula. In RKF45 we instead advanced the integration
with the fifth-order formula, local extrapolation. The reasons given in [21, 22] for
doing this remain valid in DEGRK, but in one respect the situation is quite
different. The algorithm described in Section 8 for selecting methods guarantees
that the step size used is stable for the F(4, 5) pair. Indeed, the conservative
nature of the algorithm often means that when the F(4, 5) pair is used, the step
size is well within the stability region. Thus the fact that the fifth-order formula
is the more stable is not relevant in DEGRK. Furthermore, the constraint on the
step size greatly increases the likelihood that the fifth-order formula is signifi-
cantly more accurate than the fourth-order formula. As a result the local error
estimate is more reliable and local extrapolation is more useful.

Kaps and Rentrop [13] have devised (3, 4) Rosenbrock formula pairs which are
four-stage formulas involving three function evaluations and one partial deriva-
tives evaluation per step. In their Proposition {3.19) they give a five-parameter
family of formulas. In Proposition (3.20) they give a choice of parameters leaving
one free parameter 7 which results in a fourth-order formula satisfying five of the
nine equations of condition for a fifth-order formula. The parameter y essentially
determines the stability properties of the pairs constructed from either proposi-
tion. The authors intended that the integration be advanced with the fourth-
order formula. They give two formula pairs in [13] and a related pair in the
text [24].

We have not used the pairs selected by Kaps and Rentrop for two main reasons.
One is that the fourth-order formulas they selected are just barely stable at
infinity. In the GRK4T pair and the pair in [24], the companion third-order
formula is not stable at infinity. The GRK4A pair does have a third-order formula
with reasonable damping at infinity. For this reason we chose first to implement
the GRK4A pair, but advancing with the third-order formula. As we report in
Section 11, this is a better way to proceed for difficult problems.

ACM Transactions on Mathematical Software, Vol. 8, No. 2, June 1982.

100 L .F . SHAMPINE

We would have been happier with GRK4A if the fourth-order formula were
also strongly damped at infinity, but we were prepared to accept this until we ran
into what we consider a serious defect: The Kaps-Rentrop formulas do not
evaluate f a t points spanning all of [xn, x,+l]. This is a general difficulty which we
shall discuss in Section 9. Within the family of Proposition (3.20) there is just one
possibility without this defect. As it turns out, both formulas have the same
damping at infinity which is very nearly as good as the third-order formula in
GRK4A. Furthermore both formulas are A-stable. Kaps and Rentrop gave their
formulas in decimal form. We went through the tedious computations to obtain
this other pair in rational form. It is pleasing that they turned out to be so simple.
This increases portability. The formula pair is

y ' = f (x , y)

E = I - ½hfAxo, yo)

E k l -- f(xo, yo) + ½hfx(xo, yo)

Ek2 = f (xo + h, yo + hk~) - ~hfx (Xo, yo) - 4k~

Ek3 = f(xo + ~h, yo + ~ h k l + ~hk2) + V,~hfx (Xo, yo)

+ ~ k , + ~k2 (3)

Ek4 = f(xo + ~h, yo + ~hk l + ~hk2) + ~hf~(xo , yo)

7
- ~ k ~ - ~ k 2 - t k 3

y3(Xo -t- h) = y o + h(]~(~ki -I- ~k2 -I- ~ k 3)

y4(xo + h) =yo + h({~k, + ¼k2 + ~ k 3 + ~ k 4)

y4(xo + h) - y3(xo + h) = h (~-~k~ + ~k2 + ~ k 4) .

6. EFFICIENT REPRESENTATION

The usual form of the Rosenbrock formulas (2) apparently re$1uires the storage
of the Jacobian matrix and a matrix-vector multiplication at each stage. These
costs can be avoided by a simple manipulation of the formula as suggested by
Wolfbrandt [29, p. 90] and others [14]. The resultant form is exemplified by the
pair (3).

A significant amount of arithmetic can be saved in the formation of E by
scaling. In the case of (3) we simply work with f~ - (2 / h) I instead of E whenever
a linear system is to be solved. For the solution of stiff ODEs we think this is a
more natural scaling anyway. Scaling in this way is advocated by Gourlay and
Watson [28, pp. 123-133] for a BDF code and is used in a sparse, semi-implicit
Runge-Kutta code [11], but it does not seem to be well known yet.

Solution of (3) involves the formation and factorization of E and then the s
solutions for the k,. The question that interests us right now is whether to keep
a copy of the Jacobian f~ or to write over it in forming and factoring E. Because
a Rosenbrock method presumes that f~ changes at every step, it is recomputed
after every successful step. So the only obvious reason for saving fy is to reuse it
when repeating a rejected step. Because of the expense of a failed step, step size
selection algorithms are usually rather conservative so as to make failed steps
ACM TransaeUons on Mathematmal Software, Vol 8, No 2, June 1982.

Implementat,on of Rosenbrock Methods • 101

uncommon. We expect Rosenbrock methods to be applied to problems for which
computation of fy is not much more expensive than computation of f Thus
recomputation of fy at failed steps should not be a very big waste for the kind of
code and problem we have in mind. In compensation we roughly halve the storage
required by the code. We deemed this to be a bargain in DEGRK.

7. SOFTWARE INTERFACE

Recently the author and H. A. Watts [23] presented a design for a software
interface to a package of ODE solvers called DEPAC. At the time the package
contained three solvers: DERKF, a Runge-Kutta Fehlberg code; DEABM, an
Adams-Bashforth-Moulton variable order code; and DEBDF, a BDF variable
order code. The generalized Runge-Kutta Fehlberg and Rosenbrock code
DEGRK was written to fit into DEPAC and is now being distributed with it.
Accordingly, DEGRK was provided with all the user convenience and protection
specified in the package. For the most part, the interface is an obvious mixture of
the interfaces for the Runge-Kutta and BDF codes along with appropriate
descriptive comments. Some matters are pertinent only to DEGRK. One is to
discover and report that ill-conditioning is causing the step size to be restricted.
The package design was intended to incorporate such additional interrupts.

We have chosen a different form for the partial derivative routine than is
customary. In part this is necessary. A BDF routine needs only the Jacobian fy;
a Rosenbrock routine needs fx too. The difference could have been concealed by
using the autonomous form, but we think it better to emphasize the difference.
Thus the partial derivative routine returns with the matrix fy and the vector fx.
We require f to be evaluated in this subroutine at the same time. This is in
addi t ion to providing a separate subroutine for the evaluation of f. The device is
intended to increase the efficiency of the code and to make it more likely that
partial derivatives are not a lot more expensive than a function evaluation. It
depends on the fact that the code never requires evaluation of the partial
derivatives without also requiring evaluation of the function at the same argu-
ment. The gain to be made is that often the function evaluation is cheap if
combined with the evaluation of the partial derivatives. For the examples of
Section 2 one almost has to evaluate f i n the course of evaluating fy and fx. If the
user chooses to program the partial derivative subroutine to take advantage of
this fact, and if the call list is as we take it, a function evaluation is obtained at
a considerably reduced cost. If the user does not want to be bothered, or if it is
not cheaper to combine the fand the partial derivative evaluations, he can simply
insert a call to the f subroutine in his subroutine for the partial derivatives. This
costs the user some linkage and a little complication in writing the partial
derivative subroutine, but the cost is not large. When applicable, the device could
be quite helpful.

8. STIFF OR NONSTIFF?

Within the class of problems postulated, it is relatively easy to decide at any step
whether to use an explicit or Rosenbrock one-step method. We shall describe
what we did in DEGRK and the reader will see that the ideas are broadly
applicable. Although crude, the decision procedure is remarkably useful.

ACM Transact ions on Mathemat ica l Software, Vol. 8, No. 2, June 1982.

102 " L. F. SHAMPINE

We have found that an effective code for nonstiff problems can be based on a
pair of formulas of orders 4 and 5 involving 6 stages which were devised by
Fehlberg. We would like to be able to switch from such a code to a procedure
suitable for stiff problems when it would be more efficient and back when it would
not. Naturally we expect to pay something for the convenience of such a type-
insensitive code, but we hope that the cost will be almost negligible if the problem
is unequivocally nonstiff or stiff. This switching turns out to be feasible.

The first question we answer is when to switch to a method suitable for stiff
problems--in our case a Rosenbrock formula pair. The explicit Runge-Kutta
formula is inefficient only when a step size h~cc suitable for achieving the requested
accuracy must be reduced to hst~b~e to keep the computation stable. We can decide
when to switch if we can estimate h~ce and h~t~ble. One's immediate reaction is
likely to be that all general-purpose codes estimate h~c¢, and we need only consider
hstable. Unfortunately this is not so. We have discussed the behavior of Runge-
Kut ta codes in the presence of stability restrictions elsewhere [19]. Briefly, if h~¢c
>> h~t~ue, the code will increase the step size until the computation becomes
unstable. The growing error is seen by the local error estimator and the step size
reduced until the computation is again stable. For such a step size propagated
error is actually damped out and eventually the smooth behavior of the true
solution appears in the numerical solution. As this behavior is manifested, the
code realizes its step size is smaller than h~¢o and increases the step size. The
cycle repeats itself. It is gratifying that the error never gets out of hand, but the
difficulty we must face here is that the step size which the code estimates as
appropriate for the accuracy is ordinarily far smaller than h To obtain a
reasonable estimate of h we must force the code to work within its region of
absolute stability. Thus a critical issue is to obtain a good estimate or a reliable
bound for hstable.

Most explicit Runge-Kutta methods have stability regions which contain a
(half) disk of radius p. (Van der Houven calls p the generalized stability boundary
[26, p. 83]. If)~ is any eigenvalue of the Jacobian fy with Re(),) _ 0 and I hk I -
p, the method is absolutely stable with step size h. We obtain a computable
relation from the bound I k I - H fy II- In DEGRK we use the L, norm which is a
simple, cheap computation. Both the Fehlberg (4, 5) formulas are stable if we
require

h II II -< 2.4. (4)

This condition is forced on the step size when the explicit Runge-Kutta method
is used so as to guarantee the computation is stable. Then we can be sure that
the step size estimated by the formula pair as appropriate for the requested
accuracy actually approximates ha¢¢ and can be used to decide when to switch.

DEGRK is organized as follows: There is a step size to be attempted which was
estimated in a special module for the first step or in the module used to attempt
the previous step. This step size may be reduced so as to produce output at
desired points. This matter is described in [21, 22]. Unlike RKF45, DEGRK does
not use the "stretching" device, but it does use a "look-ahead." As described in
Section 4, the step size might be reduced to improve the conditioning of the
matrix E in (2). These adjustments to the step size are done before the method
is selected because the choice is critically dependent on the step size. In a module

ACM TransacUons on Mathematmal Software, Vo] 8, No 2, June 1982

Implementat ion of Rosenbrock Methods • 103

it is decided which method to use and the step size is possibly reduced further.
Next control goes to one of the two modules for attempting a step by the two
methods. If the step is a success, the module used estimates what step size is
appropriate for the next step. If the step is a failure, a step size for another try is
selected. After a failure control is returned to the point where this description
began. This is the reason we said "to attempt" the previous step.

There are three cases. The first step is always taken with the explicit Runge-
Kutta method so as to get on scale. Also it may be necessary to try several times
if the estimated step size is badly off, and this is much cheaper to do with the
explicit formula. The other two cases depend on the method used for the
preceding step.

Suppose the preceding step was taken with the Rosenbrock method. If the step
size satisfies (4), we switch to the Fehlberg scheme and otherwise continue with
the Rosenbrock method. This implies that the explicit Runge-IZmtta formula will
be used for all sufficiently small step sizes. There is a question as to how to adjust
the step size on the change of formula. Here we do not adjust it at all. The
Fehlberg pair is of higher order and is an accurate pair of more stages. We
postulate that if it is stable, it is more accurate than the Rosenbrock pair. Indeed,
because we might be well within the stability region of the method, the F(4, 5)
pair might be a lot more accurate than necessary with this step size. Because we
adjust step size at every step it is not necessary that we have a good scheme for
altering the step size when we change formula. On the other hand, we do need to
prevent frequent changes so as to allow the code time to match the step size to
the accuracy required.

If the preceding step was taken with the Fehlberg formula, we reduce the step
size as necessary so that (4) holds and stability is guaranteed. If the step size had
to be reduced pretty significantly, we can expect that stability, rather than
accuracy, is determining the step size. Then it is reasonable to believe that the
Rosenbrock method will be successful at this step size even though it is a lower
order method than the Fehlberg method. In DEGRK we switch to the Rosenbrock
method if the step size satisfying (4) is less than half that deemed appropriate for
the Fehlberg method.

It is not very likely that a problem would call for a step size h such that h [] fy H
- p for many steps, but to make frequent switches less likely, we have made it
easier to switch to the Fehlberg formula than vice versa. In point of fact, frequent
switches would not be important at all except for the crudity of the "adjustment"
of step size on a switch.

To hold down the overhead, especially for nonstiff problems, we do not evaluate
the Jacobian nor its norm at every step. We keep track of whether the Jacobian
has been evaluated at the current step and whether its norm has been evaluated.
In the module for selecting the method, we check if the step size is close to the
critical point, specifically if

½p __ h]] fy [[old < : 4p.

If it is, we form, if necessary, a current f~ and we form, if necessary, a current l[fy [[
for our decision. In any event we form a current value of][fy [[every five steps.
With the Rosenbrock scheme, this saves a number of matrix norm computations.
With the Fehlberg scheme, this saves a good many unnecessary Jacobian evalu-

ACM Transact ions on Mathemat ica l Software, Vol. 8, No 2, June 1982.

1 0 4 L. F. SHAMPINE

Table L Solution by DEGRK of the Problem E2, Which Is
Nonstiff but Borders Being Stiff at Crude Tolerance

N u m b e r of N u m b e r of fy
To le rance s t eps m a x h [I fy [I eva lua t ions

10 -2 6 4 6
10 -4 10 2 7
10 -e 19 2 7

ations. If the problem is unequivocally nonstiff, we shall evaluate the Jacobian
every five steps. For the six stage F(4, 5) methods this represents 30 function
evaluations. We are presuming of the class of problems that evaluation of the
function and the Jacobian together is not a lot more expensive than evaluating
the function alone. To get some idea of the costs, suppose that the evaluation of
both function and Jacobian is 2 ½ times the cost of evaluating a function alone. In
such a case, evaluating the Jacobian to test for stiffness increases the cost in
function evaluations of solving an unequivocally nonstiff problem by only 5
percent. We consider this to be a negligible cost for the convenience of a type-
insensitive code. We remark that, roughly speaking, DEGRK behaves like the
efficient code RKF45 when it is confronted with an unequivocally nonstiff
problem.

Clearly the cost of testing goes up when the code is working close to the
switching point. One might evaluate the Jacobian at every step, even though the
integration is carried out with the explicit formula pair. On the other hand, the
conservative nature of the algorithm means that a problem may be treated as
stiff when it would actually be more efficient to use the explicit Runge-Kutta
scheme. This strikes us as an unavoidable price which should not be a large one.

We shall consider a few examples to illustrate the usefulness of switching.
First let us consider the problem E2 of the test set [8]. This is van der Pol's
equation, but it is n o t undergoing relaxation oscillations and we consider it not to
be stiff. According to the authors of the test set, the maximum magnitude of an
eigenvalue is at most 15 and the length of the interval is only 1. Results are
displayed in Table I. When solved with DEGRK at a pure absolute error tolerance
of 10 -2, the problem is marginal. Four of the six (!) steps needed to solve the
problem were taken with the F(4, 5) pair. The Jacobian was evaluated at every
step because this is a borderline problem. At the tolerances 10 -4 and 10 -6 all steps
were taken with the F(4, 5) pair. At the crudest tolerance when the problem was
most ambiguous, the code made 36 function evaluations so that the 6 evaluations
of the partial derivatives (the associated f evaluation is included in the 36
reported) was a significant but acceptable cost. At the most stringent tolerance
there were 121 f evaluations and the number of partial derivative evaluations
approaches the 5 percent we expect in a clear-cut case.

For the sake of variety we shall report some results in Table II that were
computed with the Kaps-Rentrop pair GRK4A advanced with the third-order
formula. The code is DEGRK with the pair given in Section 5 replaced by
GRK4A. The B family of problems in the test set [8] are linear with nonreal
eigenvalues. B2-B5 is a family of one parameter with the eigenvalues getting
larger and moving closer to the imaginary axis as one goes from B2 to B5. B5 is
ACM Transactions on Mathematmal Software, VoL 8, No. 2, June 1982

Implementation of Rosenbrock Methods - 105

Table II. CPU Times for Solution at All Three Tolerances I0 -2,
10 -4, 10 -6 for Several Problems: The Effect of Recognizing

Nonstlff Regmns is Shown

B4 B5 A3 A4

GRK4A and F(4, 5) 0.527 0.950 0.831 1 104
GRK4A alone 1.489 4.366 1.141 1.509
BDF 1.301 18.689 1.025 2.791

a trap for high-order BDF formulas which suffer a stability restriction with this
problem. The Rosenbrock formulas we have implemented are all A-stable. When
the Fehlberg formulas were used, more function evaluations were made; for
example, at 10 -4 on B5 the function evaluations increased from 652 to 768, but
the number of partial derivative evaluations dropped as did the LU decomposi-
tions and solutions of linear systems. The real-time considerations make it
impossible to define an optimal switching point between formulas, but our results
suggest that we have made an adequate choice. By way of indicating the
possibilities of the kind of code we investigate, we made the same computations
with the BDF code of the NAG library [16] given analytical Jacobian and the
same tolerances. All the numerical results obtained were of accuracy comparable
to DEGRK. Lest the reader think that the results reported for B4 and B5 are
somehow due solely to the oscillatory nature of the solutions and the nonreal
eigenvalues, we also display results for some of the A family of linear problems
with real eigenvalues.

Evidently switching formulas to account for a lack of stiffness is of significant
value for these example problems, even though they are considered to be "stiff"
test problems. A further family of stiff and nonstiff problems will be analyzed in
Section 12.

9. DESIGN CRITERIA FOR ONE-STEP METHODS

Runge-Kutta and Rosenbrock methods evaluate the function several times in the
course of a step of length h from Xn to Xn + h, say at x , + A i h , i = 1, 2 The
author and his colleague H. A. Watts have pointed out in connection with explicit
Runge-Kutta methods that it is desirable that the evaluations span the interval
[x , , Xn+~]. This is so that discontinuities can be "seen" by the formula.

It is typical of stiff problems that they exhibit small regions in which the
solution changes so fast that it is almost discontinuous on a time scale suitable
for the rest of the problem. We shall describe these boundary layers or transition
regions here as quasi-discontinuities. Relaxation oscillations are a familiar ex-
ample. Another kind of example comes from a forcing function. Hindmarsh and
Byrne have considered a couple of mock-ups of photocatalyzed atmospheric
reactions (see, e.g., [5]) which are illustrative. The simpler has the form

y ' (t) = d - by + a E (t).

The forcing function E (t) is zero during the 12-hour night. At sunrise it increases
in seconds to a value almost constant during the day and reverts to 0 at sunset.
The problem is so stiff that the solution is nearly always in steady state, in
particular it has the constant value d / b at night. Thus the forcing function E (t)
and the solution y (t) are nearly square waves.

ACM Transactions on Mathematical Software, Vol. 8, No. 2, June 1982

106 • L . F . SHAMPINE

With the more familiar methods we expect a code to locate a quasi-discontinuity
very sharply. During a period of slow variation a code for stiff problems will take
very large time steps. On such a time scale a boundary layer "looks" like a
discontinuity. We expect, and find in the widely used codes, that codes will have
repeated step failures at such a quasi-discontinuity until the step size is reduced
to the point that the solution is not changing rapidly on the new time scale. Of
course this means that the boundary layer is located accurately and resolved to
the degree necessary.

Quasi-discontinuities cannot be regarded as pathological for stiff problems and
it is clear that serious errors in their solution are possible with any formula which
does not evaluate at t,,÷l. Specifically, if during a smooth portion of an integration
a method might use a step size of h, a quasi-discontinuity could be located
improperly by as much as (1 - Af lh , where t , + A~h is the point closest to tn+l at
which the evaluation takes place.

Among the fully implicit Runge-Kutta methods, considerable attention has
been directed at those based on the Gaussian points because they achieve
maximal order and A-stability. They are all defective in the way we have pointed
out, with the midpoint rule being the worst case. Hulme and Daniel [12] have a
code implementing both Gaussian and Radau formulas with doubling as an error
estimator. Our observation applies directly. It is interesting to note that in the
recent derivation of some formulas by Butcher [4] (and implemented by Burrage,
Butcher, and Chipman) the defect is not considered and it is quite possible.
However, the additional constraints applied to achieve better stability properties
had the side effect of avoiding the defect.

Lindberg [28, pp. 201-215] has based an extrapolation code on a modified
midpoint rule

h f (h y.+l + y ~) Yn+~ = y . + tn + -~, 2 "

It is interesting that there has been some discussion [10, p. 165] as to whether the
basic formula ought to be this rule or the trapezoidal rule

h
yn+, = y , + ~ [f(tn, y~) + f(a+l , yn+l)].

The argument advanced in favor of the midpoint rule is that it is unnecessary to
evaluate f(t ,+l, yn+l). In the present context we see that this is an argument
against the midpoint rule.

The midpoint rule is an example of a semi-implicit formula. Some computa-
tionally interesting examples of such formulas considered by Crouzeix, Alexander
[1], and Norsett exhibit one or more defects arising from an attempt to achieve
various other computationally desirable properties. Crouzeix's (2, 3) A-stable
DIRK formula does not evaluate at tn+l. The (3, 4) formula evaluates in the
future, as does Norsett's formula.

The defect we have noted is practically standard with Rosenbrock formulas;
see, for example, the formulas used in the codes of Bui [3], of Villadsen and
Michelsen [27], and of Kaps and Rentrop [13].

In the course of these studies we noted that a number of codes are based on
one-step methods which evaluate outside the step, either in the past, some A, <
ACM Transact]ons on Mathematmal Software, Vol 8, No 2, June 1982

Implementation of Rosenbrock Methods • 107

0, or in the future, some A, > 1. This has traditionally been avoided without any
special comment, but in view of the recent use of such formulas, a few remarks
seem to be in order. If a problem arises in autonomous form, there is no obstacle
to evaluating outside the step. As we have commented earlier, most theoretical
work is done with the autonomous form and it is easy to understand how a
researcher might overlook an evaluation outside the interval. Several of Bui's
Rosenbrock formulas evaluate in the past. This is not greatly different from a
method with memory. There is an obvious difficulty with starting and after
{effectively) restarting due to discontinuities. Bui's code apparently assumes that
evaluation in the past will cause no problem, but this is not always true. Alexander
[1] notes that a semi-implicit formula of Crouzeix evaluates in the future.
Norsett's pair as implemented by Houbak and Thomsen [11] does this too. There
is not then a starting problem, but there is a termination problem. It is not
uncommon that it is not possible to evaluate the function past some point, or its
definition changes there. The DEPAC [23] software design specifically provides
users a way to warn the code that this is the case. Any formula which evaluates
in the future needs to take special action in such a case.

We have not thought of any easy and reliable remedy for the defect of not
evaluating at the end of the step when solving stiff problems. Perhaps we should
remark that it is the combination of formula and error estimator that counts. If
the formula did not evaluate at the end, but the estimator did, there would be no
difficulty. We take a serious view of this defect. Evaluating outside the step is not
so serious. For many problems no special action is needed. Easy remedies seem
feasible because the difficulty is similar to a familiar one, but this does get away
from the {relative} simplicity of one-step methods. We feel that as an absolute
minimum of protection to the user, the prologue of any code based on such a
formula should warn the user of the situation so that he can recognize when the
code is not applicable.

10. ADJUSTMENT OF STEP SIZE

The principles of the adjustment of step size for explicit Runge-Kutta methods
are discussed at length in [21, 22]. We have followed them in the portion of
DEGRK concerned with the F{4, 5) formulas. However, if a step size should fail
more than once, we reduce the step size by the fixed factor of 0.2. This is because
the asymptotic behavior expected is not evident, else we would not have multiple
failures. With no other information we resort to the fastest reduction ordinarily
allowed.

There are some new issues when solving stiff problems that we have not seen
discussed. One is losing the scale of the problem. For some particularly difficult
problems, the Rosenbrock formulas we have implemented have needed to restart
repeatedly. The code would be integrating a smooth solution with a very large
step size and suddenly find it necessary to reduce the step size to the point that
the problem is nonstiff. It would then move back to the smooth solution, at which
time it would begin to increase the step size rapidly. We observed several cases
when the algorithm for step size adjustment appropriate to the F(4, 5) formulas
required more than 25 reductions of step size to finally obtain a successful step.

The problem with the results mentioned is a general one. When solving stiff
problems the observed order may not be that of the formula applied to nonstiff

ACM Transactmns on Mathematical Software~ Vol. 8, No. 2, June 1982

108 L . F . SHAMPINE

problems. Pro thero and Robinson [17] have taken up this matter . Ueberhuber
[25] has t r ied to cope with it in another context. I t is easy to see tha t there is a
difficulty by considering a one-step me thod applied to the specific scalar equat ion

y '=Ay.

If a t xn we have a computed solution yn, the typical one-step me thod leads to

3',+1 = R(hA)yn,

where R is a rat ional function. T h e local error

le = y(x, + h) - y,+l = (exp(hA) - R(hA))y,.

When [hA I << 1, we have

l i e [= (p('hA]v+l) yn

for a me thod of order p. However, when solving stiff systems we are interested in
this differential equat ion for Re(A) < 0, [hA [>> 1 and the situation is radically
different. First we note tha t

l e _ R (h A) = _ C o + cl c2 + . . .
- y n h-~ + {--h--~ "

T he Rosenbrock methods we implemented all have Co "- 0.3. One of the problems
we integrated had [hA [~ 101°, SO it is not surprising tha t the local error did not
behave like a th i rd-order formula. I t is surprising to many tha t the local error
may well be a decreasing function of h for [hA [>> 1. To get the kind of behavior
we expect, it m a y be necessary to reduce hA enormously.

We have responded to the si tuation in two ways. On a failed step we are
pessimistic about the assumed asymptot ic behavior. Because of the work in-
volved, it is be t te r to a t t empt a step size too small and succeed than one too large
and fail. On a first failure, we simply halve the step size. Should this fail, we
reduce the step size a t t empted by a factor of 0.2. Should this step size fail, we, in
effect, res tar t by reducing the step size so tha t [[hfy [[-- p, thus forcing the code to
change to the explicit Runge-Kut ta formula. This drastic action is because we
have accumulated evidence tha t the scale of the problem has been lost. For
reliability we reduce the step size to the point where any integral curve can be
resolved.

On a successful step we est imate an appropriate step size for continuing, but
limit it depending on how stiff the problem is. Th e explicit formula for nonstiff
regions permits a step size increase as large as a factor of 5. T h e larger [[hf~ [[is,
the more conservative we choose to be because we are working in a region where
our theoret ical underpinnings are shaky. Specifically in D E G R K , we limited the
increase of step size to

3.8
1.2 +

1.0 + II hf~ I____Jl"
50

Thus if the problem is barely stiff, the increase is l imited to a factor of 5, and if
it is ex t remely stiff, to a factor of 1.2.

ACM Transact]ons on Mathematmal Software, Vol 8, No 2, June 1982

ImplementatIon of Rosenbrock Methods • 109

11. STABILITY PROPERTIES

The stability of methods for the solution of stiff problems has been the subject of
intensive research. Nevertheless, our understanding of the matter is far from
answering the needs of practice. Early work rigorously applies only to problems
of the form y' -- Jy with a constant J which can be diagonalized by a similarity
transformation. The common numerical methods can be analyzed by the same
transformation so that one can test stability by considering the method as applied
to y ' = ~y for ~ a (complex) eigenvalue of J. Rosenbrock methods applied to this
test equation lead to a rational function R (h)~) of the step size h and h. If] R (h)~)]
_< 1, the computation is stable and otherwise, unstable. The application of this
analysis to more complicated problems is heuristic. Although experience shows
it to be useful, one should not put too much faith in it.

The reason we give this background is that the Kaps-Rentrop formula pairs
have [R (~)] - 1 for the formula they intended for advancing the solution. When
solving stiff problems we are very interested in step sizes h such that for some
eigenvalue)~ of the Jacobian,] h)~] >> 1. The author much prefers to use formulas
for which the stability is not so marginal, so as to be a little more confident that
they will be applicable to problems less artificial than the test equation.

Besides the matter of stability, there is the related matter of how accurate
formulas are for I hA I >> 1. At least for the test equation, this can be studied in
detail in terms of how well R(hh) approximates exp(h~). If [R(oo) I - 1, there is
no qualitative agreement for I hA [>> 1. If I R (oo) I is significantly less than 1, the
numerical solution is at least damped.

We preferred to advance the solution with the third-order formula of the
GRK4A pair because it has [R (oo) [- 0.31. We actually tried advancing with each
formula of the pair. Kaps has told us that in the tests of [13] it was more efficient
to use the fourth-order formula. This is easy to understand because the test set
[8] is not particularly demanding and rewards high order. Our experience was
somewhat different because our code used the Fehlberg scheme part of the time.
Whenever the Fehlberg scheme could be used, one would expect that the higher
order formula of the Rosenbrock pair would be advantageous. In our computa-
tions with the test set [8] there was no important distinction due to which formula
of the Rosenbrock pair was used. The matter was different when harder problems
were tried.

A good example of our experiences, though not the most dramatic, is the
problem of Bui [2] integrated to x = 5. We made runs in which the solution was
advanced with the third-order formula and corresponding runs with the fourth-
order formula of the GRK4A pair. The results are displayed in Table III. With
pure absolute error tolerances there was no striking difference. The number of
steps gives a fair impression of the relative work. Although not negligible, the
difference does not compare to that observed when pure relative error tolerances
were used. Considering the cost of a step, this represents an important difference
in the performance of the formulas and caused us to prefer the more damped
formula.

We would prefer that both formulas of the (3, 4) pair be strongly damped at
infinity. Also, we would prefer to advance the solution with the fourth-order
formula to take advantage of the higher order. This is partly why we made a

ACM Transact ions on Mathemat ica l Software, Vol 8, No. 2, June 1982

110 • L . F . SHAMPINE

Tab le Ill . T h e N u m b e r of S teps Requ i red to
Solve Bra ' s P rob lem wi th the G R K 4 A Pai r W h e n
the In tegra t ion Is Advanced wi th t he Fo rmula of

Order 3 and of Order 4

Order 3 Order 4

Absolu te 10 -2 24 28
error 10 -~ 90 114

Rela t ive 10 -2 158 253
error 10 -4 769 922

different selection of formula pair in Section 5 than did Kaps and Rentrop. With
our choice both formulas are A-stable and both have [R (oo) I - 0.33. This is very
nearly the same damping at infinity as that of the third-order formula of GRK4A,
but now we can advance the solution with the higher order formula (which by
construction is a relatively accurate formula of order 4).

12. MORE NUMERICAL RESULTS

As we said in the Introduction, it is not our object to compare the performance
of the code DEGRK to popular BDF codes. Some results were reported in
Sections 8 and 11. We shall present here a few additional results intended to say
something about the algorithms used in DEGRK and to suggest that Rosenbrock
methods might be competitive in suitable circumstances.

In Section 2 we stated a problem from the chemical engineering literature
which depends on three parameters K, ~, Nf. In the article referenced a set of
computations is reported for the nine problems resulting from the choices K -- 5;

= 0.1, 5, 500; Nf-- 0.1, 5, 50. The solutions are well scaled so an absolute error
test is reasonable. We solved all nine problems at a given tolerance with DEGRK
and then with the BDF code of the NAG library [16]. The results are displayed
in Table IV. Spot checking of the apparent accuracies suggests that DEGRK is
producing a somewhat more accurate result, but that the accuracies are roughly
comparable. These results and others of the kind show that DEGRK may be
more efficient in a real time sense for suitable problems provided one does not
ask for a great deal of accuracy. Kaps and Rentrop came to a similar conclusion
in [13].

The parameter choice K = 5, $ ffi 0.1, Nf -- 0.1 results in the least stiff problem.
At all three tolerances the F(4, 5) formulas are used at every step. At tolerance
10 -2 there are only 3 steps, and 3 Jacobian evaluations were made. At tolerance
10-4 the decision is less ambiguous because of the smaller step size needed to get
the accuracy. There were then only 6 steps and 2 Jacobian evaluations. At
tolerance 10 -8 there were 12 steps and 3 Jacobian evaluations. Because so few
steps are made in solving this problem, the number of Jacobian evaluations is
relatively large. As we would expect, the more stringent the tolerance, the less
stiff the problem looks and the fewer Jacobians are needed in our test. It is no
surprise that DEGRK is more efficient than the BDF code in terms of function
and Jacobian evaluations. At tolerance 10 -2 DEGRK required 21 function eval-
uations along with the 3 Jacobian evaluations, whereas the BDF code needed 35
function evaluations and 8 Jacobian evaluations. The difference of performance

ACM lhransactions on Mathematical Software, Vol. 8, No. 2, June 1982.

Implementation of Rosenbrock Methods • 111

Table IV C P U T i m e s for Solut ion of a
Chemical Engineer ing Prob lem for 9 Se t s of
Parameters : Some Sets Resu l t m a Nons t l f f

Problem; Others in a Stiff P rob lem

Tolerance D E G R K B D F

10 -e 0.205 0.497
10 -4 0.754 1.02
10 -e 4 34 1.67

Tab le V. Solut ion by D E G R K of t he P rob lem of Tab le IV wi th
the P a r a m e t e r Se t Resul t ing in the Stiffest P rob lem

Steps wi th
Tole rance m a x h7 [[fy II F(4, 5) To ta l s t eps

10 -z 7353 2 21
10 -4 4478 12 77
10 -6 1734 36 636

in this measure increases rapidly as the tolerance becomes more stringent for a
nonstiff problem.

The parameter choice K = 5, $ = 500, N / = 50 results in the stiffest problem.
Results are displayed in Table V. According to the results of Section 4, the values
of hy I[fy [[imply some fairly ill-conditioned systems in the evaluation of the
Rosenbrock formula. As is typical, more stringent accuracy requests lead to
smaller step sizes and better conditioned systems. Thus, in a way, we can expect
more accurate solutions when we really need them. A significant number of steps
were taken with the explicit method at each tolerance. Notice the rapid increase
in the number of steps as the tolerance is made more stringent. This is charac-
teristic of a fixed-order method.

It is especially hard to compare codes on difficult problems, but we shall
present one example which has its interesting points. Scott and Watts [15, pp.
197-227] report a difficult initial value problem arising from the solution by
shooting methods of a boundary value problem describing a kidney function. The
system of five equations shows a dramatic difference in cost when using the
Adams suite ODE/STEP, INTRP on variation of one initial value from 0.99026
to 0.99000. In large measure the difference in behavior is due to stiffness, although
in another study we found that both problems are stiff. The integrations are very
sensitive so high accuracy was necessary in the application. Such high accuracy
makes DEGRK inappropriate, but we thought it interesting to explore the
problem at relatively crude tolerances because of the differing stiffness.

For each of the two different initial values cited, we solved the problem at the
two pure relative error tolerances 10-2, 10-4. DEGRK must take the first step of
an integration with the explicit Runge-Kutta pair, but for these integrations the
problems were so stiff that it took no other steps with the explicit formula. The
problem with initial value 0.99000 is significantly stiffer. We computed in every
case the maximum value of hy][fy][as an indication of the stiffness. For the initial
value 0.99000 this maximum ranged from 4000 to 7000. For the initial value
0.99026, it ranged from 20 to 50.

ACM Transactions on Mathematical Software, Vol. 8, No. 2, June 1982

112 " L. F, S H A M P I N E

We also solved the problems with the BDF code from the NAG library. A
difficulty is that the computed results are of differing accuracies. We computed
solutions at the pure relative error tolerance of 10 -6 with the BDF code and
regarded them as the "true" solutions in what follows. In the application it is the
value of the solution at the end of the integration which is critical, so we
concentrated on it.

For the problem with initial value 0.99000, the BDF code computed a solution
cheaply at tolerance 10 -2 , 0.049 units of central processor time, but it was
worthless. For example it reported the first two solution components to be about
1.89 × 10 °, 5.81 × 10 -1, when they, in fact, are about 1.38 × 102 and 7.21 × 10 -3.
At the tolerance 10 -4 the cost was 0.295 units and the maximum relative error
was about 1.3 × 10 -1. When DEGRK was given the tolerance 10 -2 it took more
time, 0.180 units, but it produced a result almost as good as that with tolerance
10 -4 in the BDF code, namely, a maximum error of 1.7 x 10 -1. When DEGRK
was given the tolerance 10-4 it took less time, 0.248 units, than the BDF code and
got a lot more accuracy, namely, a maximum error of 2.0 × 10 -3. The situation
was similar, though rather less dramatic, for the initial condition 0.99026.

The kind of results seen on this problem did not surpise the author because he
adopted rather conservative tactics in DEGRK and furthermore some of the
algorithms have a tendency to result in more accuracy than required. The line of
BDF codes starting with DIFSUB [9] are not so conservative. The situation
makes it hard to compare DEGRK directly to BDF codes, but this is not the
object of the present paper. We do think the results presented show that
Rosenbrock codes are competitive with BDF codes in appropriate circumstances
and that DEGRK, in particular, is in some respects successful.

REFERENCES

1. ALEXANDER, R. Diagonally implicit Runge-Kutta methods for stiff O.D.E.'s S=am J. Numer.
Anal 6 (1977), 1006-1021.

2. BuI, T.D. Some A-stable and L-stable methods for the numerical integration of stiff ordinary
differential equations. J. A C M 26, 3 (July 1979), 483-493.

3. BuI, T.D., AND BUI, T.R. Numerical methods for extremely stiff systems of ordinary differential
equations. AppL Math Model. 3 (1979), 355-358.

4. BUTCHER, J.C. A transformed implicit Runge-Kutta method. J. A C M 26, 4 (Oct. 1979), 731-738.
5 BYRNE, G.D., HINDMARSH, A.C., JACKSON, K.R., AND BROWN, H G. A comparison of two ODE

codes: GEAR and EPISODE. Co/np. and Chem. Eng. 1 (1977), 133-147.
6. CUNE, A.K., MOLER, C.B., STEWART, G.W., AND WILKINSON, J H. An estimate for the condition

of a matrix. S I A M J. Numer. Anal. 16 (1979), 368-375.
7. DONGARRA, J.J., BUNCH, ~.R., MOLER, C.B., AND STEWART, G.W. L I N P A C K User's Guide.

Society for Industrial and Apphed Mathematics, Philadelphia, 1979.
8. ENRIGHT, W.H., HULL, T.E., AND LINDBERG, B. Comparing numerical methods for stiff systems

of O.D.E.'s. B I T 15 (1975), 10-48.
9. GEAR, C.W. Numerical Initial Value Problems m Ordinary D~fferenttal Equations. Prentice-

Hall, Englewood Cliffs, N.J., 1971.
10. HALL, G, AND WATT, J.M. Modern Numerical Methods for Ordtnary Dzfferent~a! Equatmns

Clarendon Press, Oxford, England, 1976.
11. HOUBAK, N., AND THOMSEN, P G SPARKS a FORTRAN subroutine for the solution of large

systems of stiff ODE's with sparse jacobians. NI-79-02, Institute for Numerical Analysis, Tech.
Univ. of Denmark, Lyngby, 1979.

12, HULME, B L., AND DANIEL, S.L. COLODE a colocation subroutine for ordinary differential
equations. SAND74-0380, Sandia Natmnal Laboratories, Albuquerque, N. Mex., 1974.

ACM Transactions on Mathematical Software, Vol 8, No 2, June 1982

Implementat ion of Rosenbrock Methods • 113

13 KAPS, P., AND RENTROP, P Generalized Runge-Kutta methods of order four with stepsize
control for stiff ordinary differential equations. Numer. Math 33 (1979), 55-68.

14 KAFS, P , AND WANNER, G. A study of Rosenbrock-type methods of high order. Institut fur
Mathematlk and Geometrie, Universitat Innsbruck, Innsbruck, Austria, 1979.

15. LAPIDUS, L., AND SCHIESSER, W.E. Numerical Methods for D~fferentiai Systems• Academic,
New York, 1976

16. NAG CENTRAL OFFICE 7 Banbury Road, Oxford, England, NAG Manual, Mark 7, 1979.
17. PROTHERO, A., AND ROBINSON, A. On the stability and accuracy of one-step methods for solving

stiff systems of ordinary differential equations. Math Comp. 28 (1974), 145-162.
18. RODRIGUES, A., AND BEIRA, E.C Staged approach of percolation processes. AIChE J. 25 (1979),

416-423
19. SHAMPINE, L.F. Stiffness and nonstiff differential equation solvers, II. Detecting stiffness with

Runge-Kutta methods. ACM Trans. Math. Softw. 3, 1 (March 1977), 44-53.
20. SHAMPINE, L.F. Implementation of imphclt formulas for the solution of O.D.E.'s. SIAM J. Sc~.

Stat. Comp. 1 (1980), 103-118.
21. SHAMPINE, L.F., AND WATTS, H.A. The art of wrmng a Runge-Kutta code, Part I. In Mathe-

matwal Software IlI, J. R. Rme (Ed.). Academic, New York, 1977.
22. SHAMPINE, L.F., AND WATTS, H.A. The art of wntmg a Runge-Kutta code, II. Appl. Math.

Comp 5 (1979), 93-121.
23. SHAMPINE, L.F., AND WATTS, H.A. DEPAC--Design of a user oriented package of ODE solvers.

SAND79-2374, Sandia National Laboratories, Albuquerque, N. Mex., 1980.
24. STOER, ~[., AND BULIRSCH, R. Introductmn to Numerwal Analysts. Springer-Verlag, New York,

1980.
25. UEBERHUBER, C.W Implementation of defect correction methods for stiffdifferential equations.

Comput. 23 (1979), 205-232.
26. VAN DER HOUVEN, P.J. Construction of Integration Formulas for Initial Value Problems

North-Holland, Amsterdam, The Netherlands, 1977.
27. VILLADSEN, J., AND MICHELSEN, M.L. Solutton of Dzfferentlal Equation Models by Polynomial

Approx~matmn. Prentme-Hall, Englewood Cliffs, N.J., 1978.
28. WILLOUGHBY, R.A. St~ffD~fferenttal Systems. Plenum Press, New York, 1974.
29. WOLFBRANDT, A. A study of Rosenbrock processes with respect to order conditions and stiff

stabihty. 77.01R, Dep. Computer Scmnce, Univ. of Goteborg, Goteborg, Sweden, 1977.

Recewed November 1980; revised November 1981; accepted February 1982

ACM Transactions on Mathematical Software, Vol. 8, No. 2, June 1982

