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1. INTRODUCTION 

T h e  m o s t  p o p u l a r  codes  for  t h e  n u m e r i c a l  s o l u t i o n  of  a s t i f f  i n i t i a l  v a l u e  p r o b l e m  
for  a s y s t e m  of  o r d i n a r y  d i f f e r en t i a l  e q u a t i o n s  ( O D E s )  a r e  b a s e d  on  t h e  b a c k w a r d  
d i f f e r e n t i a t i o n  f o r m u l a s  ( B D F ) .  T h e r e  is a g r e a t  n e e d  for  a b e t t e r  u n d e r s t a n d i n g  
of  m a n y  f u n d a m e n t a l  i s sues  in  b o t h  t h e o r e t i c a l  a n d  p r a c t i c a l  t e rms .  I n  a d d i t i o n  
t h e  p o p u l a r  c o d e s  h a v e  c e r t a i n  w e a k n e s s e s  a r i s ing  f r o m  b o t h  t h e  f o r m u l a s  a n d  
t h e i r  i m p l e m e n t a t i o n s .  T h e  s i t u a t i o n  h a s  s t i m u l a t e d  t h e  i n v e s t i g a t i o n  o f  m a n y  
a l t e r n a t i v e s  to  t h e  B D F .  B e c a u s e  r a t h e r  few h a v e  b e e n  d e v e l o p e d  so fa r  a s  to  
r e s u l t  in  i t e m s  of  m a t h e m a t i c a l  so f tware ,  i t  is d i f f icul t  to  e v a l u a t e  t h e  t h e o r e t i c a l  
a d v a n c e s  in  t h e  f ield.  

In  so lv ing  t h e  s y s t e m  

y '  = f ( x ,  y ) ,  y ( a )  given,  (1) 

t h e  i m p l e m e n t a t i o n s  of  t h e  B D F  e m p l o y  t h e  J a c o b i a n  m a t r i x  fy in  a s imp l i f i ed  
N e w t o n  i t e r a t i o n  for  t h e  e v a l u a t i o n  o f  t h e  i m p l i c i t  fo rmulas .  T h i s  h a s  s u g g e s t e d  
to  m a n y  r e s e a r c h e r s  t h e  p o s s i b i l i t y  o f  i n c o r p o r a t i n g  t h e  J a c o b i a n  m a t r i x  d i r e c t l y  
in to  t h e  fo rmula .  One  l ine  o f  d e v e l o p m e n t  h a s  b e e n  t h a t  o f  R o s e n b r o c k  fo rmulas .  
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94 L. F. SHAMPINE 

For a differential equation in autonomous form, y '  -- f(y), such methods have the 
form 

) ( I -  ~hfy(yo))k, --- h f  + Z ark, + hfy(yo) y,,k,, 
y~l  y--1 

i - - 1 , . . . , s  
(2) 

yl(xo + h) = yo + ~ C,k,. 

Here the constants y, a,j, ~,,j, C, define the formula. Each stage k, is obtained by 
solving a system of linear equations with the same matrix. The linear combination 
of stages advances the solution y0 at x0 to yl at xo + h =- xl. 

These formulas are not implicit in the sense that  the BDF are and so avoid 
some implementation difficulties. It has proved possible to derive Rosenbrock 
formulas which in some respects have better stability than the higher order BDF. 
A price one pays for these and other advantages is that  one must evaluate partial 
derivatives of f at every step. Ordinarily it is presumed that  these partial 
derivatives are either clumsy or expensive to obtain, and for this reason the 
popular BDF codes try to evaluate fy as infrequently as possible. This presumption 
is by no means always true, so Rosenbrock formulas should not be discarded for 
this reason alone. We shall restrict our attention in this paper to the class of 
problems for which the partial derivatives of f are convenient to obtain and are 
not a lot more expensive than the evaluation of f itself. 

Recently Kaps and Rentrop [13] derived some Rosenbrock formulas with 
int:ernal error estimators. This was a natural development in view of the history 
of explicit Runge-Kutta methods and was an important step in making the 
methods practical. The computational results they present suggest that  Rosen- 
brock methods might be a practical alternative to the BDF. Their paper stimu- 
lated the author to develop a piece of mathematical software, DEGRK, based on 
a Rosenbrock formula. Here we report some of the algorithmic and software 
developments we considered necessary. Although these developments were real- 
ized in a particular code, most of the work is generally applicable to Rosenbrock 
methods. 

At present, codes are clearly intended for stiff or nonstiff problems, but not 
both. Deciding the type of the problem is an impossible task for a user. This 
author considers the question of how to relieve the user of this decision to be the 
most pressing question in the area of ODE mathematical software. Within the 
class of problems we postulate here, the matter is relatively simple. We shall 
describe how to switch between an explicit Runge-Kutta formula pair and a 
Rosenbrock formula pair at any step reliably and economically. The implemen- 
tation of DEGRK uses a Fehlberg F(4, 5) pair for the explicit Runge-Kutta 
formulas. If the problem is unequivocally nonstiff, the integration by DEGRK is 
nearly as efficient as that  by RKF45 [21, 22], an effective code for nonstiff 
problems based on the F(4, 5) pair. The class of problems for which DEGRK is 
intended is easily recognized. In this class there is no particular reason for a user 
even to consider the issue of stiffness. 

In this investigation we learned that  virtually all of the published Rosenbrock 
methods have what we consider to be a serious defect for their use in production- 

ACM Transactions on Mathematmal  Software, Vol 8, No 2, June 1982. 



Implementatton of Rosenbrock Methods ° 95 

quality codes. A variety of other one-step formulas suffer from the same defect. 
We have not seen this matter pointed out before, so we devote some space to it. 
It is the main reason we did not implement in DEGRK the formulas published 
by Kaps and Rentrop. 

Rosenbrock methods solve linear systems which may become ill-conditioned. 
We shall present a practical and cheap approximation of the condition which 
may be of value for other methods as well. 

2. GETTING PARTIAL DERIVATIVES 

In the solution of (1) the Rosenbrock methods require evaluation of the partial 
derivatives fy and fx. Here we want to indicate some problems for which these 
partial derivatives are not inconvenient nor much more expensive to evaluate 
than f itself. 

Perhaps the first observation ought to be that  all the problems of the well- 
known test set [8] fall into this class. To be sure, many of the problems are 
artificial, but many are not. The supplementary test set of Enright and Hull [15, 
pp. 45-66] also falls into the class. Most of its problems arise from a description 
of chemical kinetics in a homogeneous solution reacting according to the mass 
action law. Chemistry problems of this kind typically fall in our class of interest. 

Another class of problems which may well be suitable is the linear problem. 
The Jacobian fy must be evaluated every time fis; so it cannot be expensive nor 
very inconvenient to provide it. The uncertainty lies in the f, vector. Whether it 
is convenient and relatively inexpensive will depend on the problem. 

In our experience and in reading the scientific literature, we have seen many 
individual problems which were in the class, and many which were not. One 
problem [18] which we use as a numerical example in Section 12 is 

d--8=(1+~) 1 - ( l + N r ) X + y + K ( l _ y )  ' 

dy l+~ ( y }  
dO ~ Nf x y + K(1- y) " 

Here ~, Nf, and K are {constant) parameters. This problem caught our eye 
because the chemical engineers were interested in a range of parameter values. 
For some values the problem is not stiff and for others, it is stiff. It illustrates the 
convenience of a code which does not ask the user to decide the type. 

A very popular option in production codes for stiff problems is for the code to 
approximate the necessary Jacobians by numerical differentiation. This makes 
life easy for the user, but we do not think this option appropriate to Rosenbrock 
methods. One objection is fundamental. The Jacobian is merely an aid to the 
BDF codes--they will solve the ODE even if the approximation is terrible, albeit 
inefficiently. The Rosenbrock formulas are based on the partial derivatives and 
all statements about order and the like depend on an accurate Jacobian. Another 
objection is that  approximating partial derivatives by numerical differentiation 
generally results in a rather expensive evaluation. As a general rule, we cannot 
expect the problem to be in our class of interest if fy is approximated numerically. 
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3. THE FORM OF THE EQUATION 

Theoretical treatments of Rosenbrock methods have taken the differential equa- 
tion in autonomous form because it is convenient to avoid the special role of the 
independent variable. The research codes have followed the theory in this respect. 
Of course many problems do not arise in autonomous form, so users are expected 
to convert their problem. 

We have chosen n o t  to use the autonomous form for a number of reasons. One 
is the convenience of the software interface. The typical ODE solver accepts the 
form (1) so that  users are accustomed to it. Conversion may be fairly described 
as a nuisance to the user and leads to questions about an appropriate error 
control for the x variable. 

When using a Rosenbrock method, the linear systems to be solved constitute 
a significant fraction of the work. To reduce linear algebra costs ODE solvers 
provide options for various matrix structures. Conversion to autonomous form 
obviously affects the structure. We, for example, provide for banded Jacobians in 
DEGRK. This structure is lost on conversion. To retrieve it we would have to ask 
the user to recognize an unconventional structure for a problem in autonomous 
form, or to tell the code he actually started with a banded Jacobian and converted 
it. This kind of request is not likely to be popular with users. 

The usual conversion to autonomous form adds an equation for x as a new 
dependent variable. The eigenvalues of the Jacobian of the augmented system 
are those of fy plus an eigenvalue 0. This is not important, but n o r m s  may be 
more seriously affected. In the L1 norm we use, [I JH1 = max(ll fy II 1, II fx I] 1). We use 
the norm of the Jacobian as a bound on the spectral radius to assure stability of 
the explicit Runge-Kutta formula, and for other purposes. Increasing the norm 
by conversion has a direct, harmful effect. 

There are a couple of conceptual objections to the conversion. The typical 
BDF code, for example, accepts the form (1), and if the user provides analytical 
partial derivatives, he provides only fy. The Rosenbrock methods require fx too. 
This matter is concealed when all problems are accepted in autonomous form, 
but it is a distinction which could be important. Also, the conversion changes a 
linear to a nonlinear problem. It is interesting to note that  the famous set of test 
problems [8] did precisely this with the Liniger-Willoughby problem D1. The 
conversion of linear problems obscures the fact that  the Jacobian is immediately 
available in analytical form. It is not clear what algorithmic consequences might 
follow converting a linear to a nonlinear equation. 

It is about as easy to implement the form (1) in a Rosenbrock code as the 
autonomous form. In many papers it has been considered obvious that  one uses 
the autonomous form because of its elegance. For this reason we felt obliged to 
state a variety of arguments in support of our decision not to use it in DEGRK. 

4 CONDITIONING 

The Rosenbrock methods require the solution of linear systems involving matrices 
E = I - h 7fy- This is also true of the typical implicit method for the solution of 
stiff ODEs, although it is done for a different purpose. It has been frequently 
commented that  these matrices may be ill-conditioned, but we have not noticed 
any arguments to the effect that  this must be so. We shall argue this here and 
devise a practical measure of the conditioning. 
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The situation is quite different in the cases of a Rosenbrock and, say, a BDF 
method. With the BDF and other implicit formulas, linear systems are solved to 
obtain successive iterates approximating the result defined implicitly. As de- 
scribed in [20, p. 109], this is normally arranged so that  one solves for the change 
in the previous iterate. Ill-conditioning may slow down the overall iteration 
because some digits in the change are spoiled, but as long as a few leading digits 
are obtained correctly, the process "converges." With a Rosenbrock formula, the 
solutions enter directly (and indirectly through the function evaluations) into the 
solution value for the step. The situation for the first stage is especially clear. 
With such formulas, inaccurate solution of the linear system leads to inaccurate 
solution values. Normally one does not solve stiff ODEs to stringent (relative) 
accuracies, so with a reasonable computer word length, this is probably not very 
important in practice. However, in this respect Rosenbrock methods and methods 
like the BDF appear to differ fundamentally. 

By definition cond(E) = [I E [[ [[ E -1 [[. In general p (M) - [[ M ][, where p (M) is 
the spectral radius of the matrix M. If ~ is an eigenvalue of fy, then 1 - hy~ is an 
eigenvalue of E and its reciprocal an eigenvalue of E -1. At this point we need to 
put in some information to the effect that the ODE problem is stiff. Stiffness is 
not a precisely defined concept. Nevertheless, many workers would be willing to 
accept a statement like the following. For a step size h yielding the required 
accuracy in the formula, the eigenvalues ~ of the Jacobian fy fall into two classes: 

I [hh[  << 1, 

II Re(),) ___ 0. 

It is further assumed that  neither class is empty, and that  in class II there is an 
eigenvalue ),j with [ h),~ [ >> 1. Notice that we do not take up the conditioning of 
a single equation. 

The general result 

[ 1 I<1 if Re()`)<0 
1 - hy),  - -  

tells us that  no eigenvalue in class II causes p ( E  -~) to be greater than 1. The 
assumption class I is not empty then implies that  p ( E  -~) - 1. -The assumption 
about class II says that  

p ( E )  - max[h),k[ > [h),j[ >> 1. 
k 

From the general relation of spectral radius to norm, we now conclude 

cond(E) --- IIEllllE-' II >- P ( E ) P ( E - ~ )  >> 1. 

Thus if the problem is stiff in the sense we have used, the matrix E = I - h yfy 
m u s t  be ill-conditioned. 

A problem is usually described as nonstiff if all eigenvalues of the Jacobian are 
in class I. This ignores the important role of the norm, and in these circumstances 
ill-conditioning is not precluded. If the stronger condition that  [[ hfy [[ is rather less 
than 1 holds, it is easy to see that in this particular norm, I - hyfy is not ill- 
conditioned. 
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Because conditioning directly affects Rosenbrock methods  and because we 
have seen tha t  ill-conditioning is to be expected, we considered how to get some 
idea of the conditioning. A scheme was devised [6] for L I NPACK [7] which tries 
to compute a large lower bound for the condition of a factored matrix. A 
computable norm is chosen for II E II which in L I NPACK happens to be the same 
one we chose in DEGRK,  namely, I] E [I 1. From E v  = w one gets 

II E - '  II --- II v II/II w II. 
The idea of [6] is to select a w judiciously so as to arrive at  a large lower bound. 
We observed tha t  there is a cheaper way to get a large lower bound in our 
context. I t  is perhaps a little clearer if we scale so tha t  

____1 I 
E = f ,  h~  " 

Let  AN be an eigenvalue of fy of min imum modulus and let v be an associated 
eigenvector. Then  

and as above 

II E - '  II --- 
1 - "yh)tN 

We shall approximate this lower bound by h~,. For stiff problems, I h ~ y l  << 1, SO 
this is a good approximation. 

We could evaluate II E 111 directly, but  this does not  seem worth the trouble. In 
general 

In the particular norm we use, II E Ill - I1 fy I11 is an excellent approximation in the 
sense of relative error when h,/II fy I[ >> 1. 

Finally then  

cond(E)  _> ~/h[[El[ - yhllfy]l, 
I1 - h ' y h N I  

where the approximation to the lower bound should be excellent if the ODE 
problem is stiff in the sense we have used. 

The  approximate lower bound for the condition is extremely convenient be- 
cause all the pert inent  quantit ies are computed (cheaply) for other purposes. For 
stiff problems it can be expected to provide a useful indication of conditioning. 
We have done a variety of experiments comparing the lower bound of L I NPACK 
to our approximate lower bound. Experience with the L I NPACK lower bound 
seems to show tha t  it is comparable to the actual condition. The  limited experi- 
ments  we have done indicate tha t  our cheap est imated lower bound is equally 
satisfactory in our very special circumstances. 

Because of its generality, the L INPACK estimate is more expensive. I t  does a 
norm computat ion which we avoid by the approximation U E II - II f ,  I1, available 
from other computat ions in DEGRK.  It  does two extra solutions of linear systems 
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to form the estimate. The Rosenbrock procedure in DEGRK only does four 
solutions of linear systems in the step, so the LINPACK estimate represents a 
substantial extra expense. Because one advantage of the Rosenbrock methods 
may be their low overhead, the cheaper condition estimate is to be preferred here. 

In DEGRK the question of ill-conditioning seems not to be serious. Because of 
the low-order formulas implemented and their less than optimal stability at 
infinity, severe ill-conditioning appears to be rare. In addition, the low order 
makes the code inappropriate for stringent tolerances. We have chosen to restrict 
the step size as necessary to ensure that 

II hTfy II - 101° 

on a machine with about 14 decimal digits. Should such a restriction be imposed 
10 times in a run, the integration is interrupted to warn the user of the situation 
and to inquire as to whether he wishes to continue. 

5. FORMULA PAIRS IN DEGRK 

In DEGRK we chose to implement a (4, 5) pair of formulas due to Fehlberg 
because they proved very satisfactory in other software, RKF45 [21, 22], we have 
written for nonstiff problems. Fehlberg intended that  the integration be advanced 
using the fourth-order formula. In RKF45 we instead advanced the integration 
with the fifth-order formula, local extrapolation. The reasons given in [21, 22] for 
doing this remain valid in DEGRK, but in one respect the situation is quite 
different. The algorithm described in Section 8 for selecting methods guarantees 
that  the step size used is stable for the F(4, 5) pair. Indeed, the conservative 
nature of the algorithm often means that when the F(4, 5) pair is used, the step 
size is well within the stability region. Thus the fact that the fifth-order formula 
is the more stable is not relevant in DEGRK. Furthermore, the constraint on the 
step size greatly increases the likelihood that the fifth-order formula is signifi- 
cantly more accurate than the fourth-order formula. As a result the local error 
estimate is more reliable and local extrapolation is more useful. 

Kaps and Rentrop [13] have devised (3, 4) Rosenbrock formula pairs which are 
four-stage formulas involving three function evaluations and one partial deriva- 
tives evaluation per step. In their Proposition {3.19) they give a five-parameter 
family of formulas. In Proposition (3.20) they give a choice of parameters leaving 
one free parameter 7 which results in a fourth-order formula satisfying five of the 
nine equations of condition for a fifth-order formula. The parameter y essentially 
determines the stability properties of the pairs constructed from either proposi- 
tion. The authors intended that  the integration be advanced with the fourth- 
order formula. They give two formula pairs in [13] and a related pair in the 
text [24]. 

We have not used the pairs selected by Kaps and Rentrop for two main reasons. 
One is that  the fourth-order formulas they selected are just barely stable at 
infinity. In the GRK4T pair and the pair in [24], the companion third-order 
formula is not stable at infinity. The GRK4A pair does have a third-order formula 
with reasonable damping at infinity. For this reason we chose first to implement 
the GRK4A pair, but advancing with the third-order formula. As we report in 
Section 11, this is a better way to proceed for difficult problems. 
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We would have been happier with GRK4A if the fourth-order formula were 
also strongly damped at infinity, but we were prepared to accept this until we ran 
into what we consider a serious defect: The Kaps-Rentrop formulas do not 
evaluate f a t  points spanning all of [xn, x,+l]. This is a general difficulty which we 
shall discuss in Section 9. Within the family of Proposition (3.20) there is just one 
possibility without this defect. As it turns out, both formulas have the same 
damping at infinity which is very nearly as good as the third-order formula in 
GRK4A. Furthermore both formulas are A-stable. Kaps and Rentrop gave their 
formulas in decimal form. We went through the tedious computations to obtain 
this other pair in rational form. It is pleasing that  they turned out to be so simple. 
This increases portability. The formula pair is 

y '  = f ( x ,  y) 

E = I - ½hfAxo,  yo) 

E k l  -- f(xo, yo) + ½hfx(xo, yo) 

Ek2 = f (xo + h, yo + hk~) - ~hfx (Xo, yo) - 4k~ 

Ek3 = f(xo + ~h, yo + ~ h k l  + ~hk2) + V,~hfx (Xo, yo) 

+ ~ k ,  + ~k2 (3) 

Ek4 = f(xo + ~h, yo + ~hk l  + ~hk2) + ~hf~(xo ,  yo) 

7 
- ~ k ~  - ~ k 2  - t k 3  

y3(Xo -t- h )  = y o  + h(]~(~ki -I- ~k2 -I- ~ k 3 )  

y4(xo + h) =yo + h({~k, + ¼k2 + ~ k 3  + ~ k 4 )  

y4(xo + h )  - y3(xo + h )  = h (~-~k~ + ~k2 + ~ k 4 ) .  

6. EFFICIENT REPRESENTATION 

The usual form of the Rosenbrock formulas (2) apparently re$1uires the storage 
of the Jacobian matrix and a matrix-vector multiplication at each stage. These 
costs can be avoided by a simple manipulation of the formula as suggested by 
Wolfbrandt [29, p. 90] and others [14]. The resultant form is exemplified by the 
pair (3). 

A significant amount of arithmetic can be saved in the formation of E by 
scaling. In the case of (3) we simply work with f~ - ( 2 / h ) I  instead of E whenever 
a linear system is to be solved. For the solution of stiff ODEs we think this is a 
more natural scaling anyway. Scaling in this way is advocated by Gourlay and 
Watson [28, pp. 123-133] for a BDF code and is used in a sparse, semi-implicit 
Runge-Kutta code [11], but it does not seem to be well known yet. 

Solution of (3) involves the formation and factorization of E and then the s 
solutions for the k,. The question that  interests us right now is whether to keep 
a copy of the Jacobian f~ or to write over it in forming and factoring E. Because 
a Rosenbrock method presumes that  f~ changes at every step, it is recomputed 
after every successful step. So the only obvious reason for saving fy is to reuse it 
when repeating a rejected step. Because of the expense of a failed step, step size 
selection algorithms are usually rather conservative so as to make failed steps 
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uncommon. We expect Rosenbrock methods to be applied to problems for which 
computation of fy is not much more expensive than computation of f Thus 
recomputation of fy at failed steps should not be a very big waste for the kind of 
code and problem we have in mind. In compensation we roughly halve the storage 
required by the code. We deemed this to be a bargain in DEGRK. 

7. SOFTWARE INTERFACE 

Recently the author and H. A. Watts [23] presented a design for a software 
interface to a package of ODE solvers called DEPAC. At the time the package 
contained three solvers: DERKF, a Runge-Kutta Fehlberg code; DEABM, an 
Adams-Bashforth-Moulton variable order code; and DEBDF, a BDF variable 
order code. The generalized Runge-Kutta Fehlberg and Rosenbrock code 
DEGRK was written to fit into DEPAC and is now being distributed with it. 
Accordingly, DEGRK was provided with all the user convenience and protection 
specified in the package. For the most part, the interface is an obvious mixture of 
the interfaces for the Runge-Kutta and BDF codes along with appropriate 
descriptive comments. Some matters are pertinent only to DEGRK. One is to 
discover and report that ill-conditioning is causing the step size to be restricted. 
The package design was intended to incorporate such additional interrupts. 

We have chosen a different form for the partial derivative routine than is 
customary. In part this is necessary. A BDF routine needs only the Jacobian fy; 
a Rosenbrock routine needs fx too. The difference could have been concealed by 
using the autonomous form, but we think it better to emphasize the difference. 
Thus the partial derivative routine returns with the matrix fy and the vector fx. 
We require f to be evaluated in this subroutine at the same time. This is in 
addi t ion  to providing a separate subroutine for the evaluation of f. The device is 
intended to increase the efficiency of the code and to make it more likely that 
partial derivatives are not a lot more expensive than a function evaluation. It 
depends on the fact that the code never requires evaluation of the partial 
derivatives without also requiring evaluation of the function at the same argu- 
ment. The gain to be made is that  often the function evaluation is cheap if 
combined with the evaluation of the partial derivatives. For the examples of 
Section 2 one almost has to evaluate f i n  the course of evaluating fy and fx. If the 
user chooses to program the partial derivative subroutine to take advantage of 
this fact, and if the call list is as we take it, a function evaluation is obtained at 
a considerably reduced cost. If the user does not want to be bothered, or if it is 
not cheaper to combine the fand  the partial derivative evaluations, he can simply 
insert a call to the f subroutine in his subroutine for the partial derivatives. This 
costs the user some linkage and a little complication in writing the partial 
derivative subroutine, but the cost is not large. When applicable, the device could 
be quite helpful. 

8. STIFF OR NONSTIFF? 

Within the class of problems postulated, it is relatively easy to decide at any step 
whether to use an explicit or Rosenbrock one-step method. We shall describe 
what we did in DEGRK and the reader will see that the ideas are broadly 
applicable. Although crude, the decision procedure is remarkably useful. 
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We have found that  an effective code for nonstiff problems can be based on a 
pair of formulas of orders 4 and 5 involving 6 stages which were devised by 
Fehlberg. We would like to be able to switch from such a code to a procedure 
suitable for stiff problems when it would be more efficient and back when it would 
not. Naturally we expect to pay something for the convenience of such a type- 
insensitive code, but we hope that  the cost will be almost negligible if the problem 
is unequivocally nonstiff or stiff. This switching turns out to be feasible. 

The first question we answer is when to switch to a method suitable for stiff 
problems--in our case a Rosenbrock formula pair. The explicit Runge-Kutta 
formula is inefficient only when a step size h~cc suitable for achieving the requested 
accuracy must be reduced to hst~b~e to keep the computation stable. We can decide 
when to switch if we can estimate h~ce and h~t~ble. One's immediate reaction is 
likely to be that  all general-purpose codes estimate h~c¢, and we need only consider 
hstable. Unfortunately this is not so. We have discussed the behavior of Runge- 
Kut ta  codes in the presence of stability restrictions elsewhere [19]. Briefly, if h~¢c 
>> h~t~ue, the code will increase the step size until the computation becomes 
unstable. The growing error is seen by the local error estimator and the step size 
reduced until the computation is again stable. For such a step size propagated 
error is actually damped out and eventually the smooth behavior of the true 
solution appears in the numerical solution. As this behavior is manifested, the 
code realizes its step size is smaller than h~¢o and increases the step size. The 
cycle repeats itself. It  is gratifying that  the error never gets out of hand, but the 
difficulty we must face here is that  the step size which the code estimates as 
appropriate for the accuracy is ordinarily far smaller than h .... To obtain a 
reasonable estimate of h .... we must force the code to work within its region of 
absolute stability. Thus a critical issue is to obtain a good estimate or a reliable 
bound for hstable. 

Most explicit Runge-Kutta methods have stability regions which contain a 
(half) disk of radius p. (Van der Houven calls p the generalized stability boundary 
[26, p. 83]. If )~ is any eigenvalue of the Jacobian fy with Re(),) _ 0 and I hk I - 
p, the method is absolutely stable with step size h. We obtain a computable 
relation from the bound I k I - H fy II- In DEGRK we use the L, norm which is a 
simple, cheap computation. Both the Fehlberg (4, 5) formulas are stable if we 
require 

h II II -< 2.4. (4) 

This condition is forced on the step size when the explicit Runge-Kutta method 
is used so as to guarantee the computation is stable. Then we can be sure that 
the step size estimated by the formula pair as appropriate for the requested 
accuracy actually approximates ha¢¢ and can be used to decide when to switch. 

DEGRK is organized as follows: There is a step size to be attempted which was 
estimated in a special module for the first step or in the module used to attempt 
the previous step. This step size may be reduced so as to produce output at 
desired points. This matter is described in [21, 22]. Unlike RKF45, DEGRK does 
not use the "stretching" device, but it does use a "look-ahead." As described in 
Section 4, the step size might be reduced to improve the conditioning of the 
matrix E in (2). These adjustments to the step size are done before the method 
is selected because the choice is critically dependent on the step size. In a module 
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it is decided which method to use and the step size is possibly reduced further. 
Next control goes to one of the two modules for attempting a step by the two 
methods. If the step is a success, the module used estimates what step size is 
appropriate for the next step. If the step is a failure, a step size for another try is 
selected. After a failure control is returned to the point where this description 
began. This is the reason we said "to attempt" the previous step. 

There are three cases. The first step is always taken with the explicit Runge- 
Kutta  method so as to get on scale. Also it may be necessary to try several times 
if the estimated step size is badly off, and this is much cheaper to do with the 
explicit formula. The other two cases depend on the method used for the 
preceding step. 

Suppose the preceding step was taken with the Rosenbrock method. If the step 
size satisfies (4), we switch to the Fehlberg scheme and otherwise continue with 
the Rosenbrock method. This implies that the explicit Runge-IZmtta formula will 
be used for all sufficiently small step sizes. There is a question as to how to adjust 
the step size on the change of formula. Here we do not adjust it at all. The 
Fehlberg pair is of higher order and is an accurate pair of more stages. We 
postulate that  if it is stable, it is more accurate than the Rosenbrock pair. Indeed, 
because we might be well within the stability region of the method, the F(4, 5) 
pair might be a lot more accurate than necessary with this step size. Because we 
adjust step size at every step it is not necessary that  we have a good scheme for 
altering the step size when we change formula. On the other hand, we do need to 
prevent frequent changes so as to allow the code time to match the step size to 
the accuracy required. 

If the preceding step was taken with the Fehlberg formula, we reduce the step 
size as necessary so that (4) holds and stability is guaranteed. If the step size had 
to be reduced pretty significantly, we can expect that  stability, rather than 
accuracy, is determining the step size. Then it is reasonable to believe that the 
Rosenbrock method will be successful at this step size even though it is a lower 
order method than the Fehlberg method. In DEGRK we switch to the Rosenbrock 
method if the step size satisfying (4) is less than half that deemed appropriate for 
the Fehlberg method. 

It is not very likely that a problem would call for a step size h such that  h [] fy H 
- p for many steps, but to make frequent switches less likely, we have made it 
easier to switch to the Fehlberg formula than vice versa. In point of fact, frequent 
switches would not be important at all except for the crudity of the "adjustment" 
of step size on a switch. 

To hold down the overhead, especially for nonstiff problems, we do not evaluate 
the Jacobian nor its norm at every step. We keep track of whether the Jacobian 
has been evaluated at the current step and whether its norm has been evaluated. 
In the module for selecting the method, we check if the step size is close to the 
critical point, specifically if 

½p __ h ]] fy [[old < :  4p. 

If it is, we form, if necessary, a current f~ and we form, if necessary, a current l[ fy [[ 
for our decision. In any event we form a current value of ][ fy [[ every five steps. 
With the Rosenbrock scheme, this saves a number of matrix norm computations. 
With the Fehlberg scheme, this saves a good many unnecessary Jacobian evalu- 
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Table L Solution by DEGRK of the Problem E2, Which Is 
Nonstiff but Borders Being Stiff at Crude Tolerance 

N u m b e r  of  N u m b e r  of  fy 
To le rance  s t eps  m a x  h [I fy [I eva lua t ions  

10 -2 6 4 6 
10 -4 10 2 7 
10 -e 19 2 7 

ations. If the problem is unequivocally nonstiff, we shall evaluate the Jacobian 
every five steps. For the six stage F(4, 5) methods this represents 30 function 
evaluations. We are presuming of the class of problems that  evaluation of the 
function and the Jacobian together is not a lot more expensive than evaluating 
the function alone. To get some idea of the costs, suppose that  the evaluation of 
both function and Jacobian is 2 ½ times the cost of evaluating a function alone. In 
such a case, evaluating the Jacobian to test for stiffness increases the cost in 
function evaluations of solving an unequivocally nonstiff problem by only 5 
percent. We consider this to be a negligible cost for the convenience of a type- 
insensitive code. We remark that, roughly speaking, DEGRK behaves like the 
efficient code RKF45 when it is confronted with an unequivocally nonstiff 
problem. 

Clearly the cost of testing goes up when the code is working close to the 
switching point. One might evaluate the Jacobian at every step, even though the 
integration is carried out with the explicit formula pair. On the other hand, the 
conservative nature of the algorithm means that  a problem may be treated as 
stiff when it would actually be more efficient to use the explicit Runge-Kutta 
scheme. This strikes us as an unavoidable price which should not be a large one. 

We shall consider a few examples to illustrate the usefulness of switching. 
First let us consider the problem E2 of the test set [8]. This is van der Pol's 
equation, but it is n o t  undergoing relaxation oscillations and we consider it not to 
be stiff. According to the authors of the test set, the maximum magnitude of an 
eigenvalue is at most 15 and the length of the interval is only 1. Results are 
displayed in Table I. When solved with DEGRK at a pure absolute error tolerance 
of 10 -2, the problem is marginal. Four of the six (!) steps needed to solve the 
problem were taken with the F(4, 5) pair. The Jacobian was evaluated at every 
step because this is a borderline problem. At the tolerances 10 -4 and 10 -6 all steps 
were taken with the F(4, 5) pair. At the crudest tolerance when the problem was 
most ambiguous, the code made 36 function evaluations so that  the 6 evaluations 
of the partial derivatives (the associated f evaluation is included in the 36 
reported) was a significant but acceptable cost. At the most stringent tolerance 
there were 121 f evaluations and the number of partial derivative evaluations 
approaches the 5 percent we expect in a clear-cut case. 

For the sake of variety we shall report some results in Table II that  were 
computed with the Kaps-Rentrop pair GRK4A advanced with the third-order 
formula. The code is DEGRK with the pair given in Section 5 replaced by 
GRK4A. The B family of problems in the test set [8] are linear with nonreal 
eigenvalues. B2-B5 is a family of one parameter with the eigenvalues getting 
larger and moving closer to the imaginary axis as one goes from B2 to B5. B5 is 
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Table II. CPU Times for Solution at All Three Tolerances I0 -2, 
10 -4, 10 -6 for Several Problems: The Effect of Recognizing 

Nonstlff Regmns is Shown 

B4 B5 A3 A4 

GRK4A and F(4, 5) 0.527 0.950 0.831 1 104 
GRK4A alone 1.489 4.366 1.141 1.509 
BDF 1.301 18.689 1.025 2.791 

a trap for high-order BDF formulas which suffer a stability restriction with this 
problem. The Rosenbrock formulas we have implemented are all A-stable. When 
the Fehlberg formulas were used, more function evaluations were made; for 
example, at 10 -4 on B5 the function evaluations increased from 652 to 768, but 
the number of partial derivative evaluations dropped as did the LU decomposi- 
tions and solutions of linear systems. The real-time considerations make it 
impossible to define an optimal switching point between formulas, but our results 
suggest that  we have made an adequate choice. By way of indicating the 
possibilities of the kind of code we investigate, we made the same computations 
with the BDF code of the NAG library [16] given analytical Jacobian and the 
same tolerances. All the numerical results obtained were of accuracy comparable 
to DEGRK. Lest the reader think that the results reported for B4 and B5 are 
somehow due solely to the oscillatory nature of the solutions and the nonreal 
eigenvalues, we also display results for some of the A family of linear problems 
with real eigenvalues. 

Evidently switching formulas to account for a lack of stiffness is of significant 
value for these example problems, even though they are considered to be "stiff" 
test problems. A further family of stiff and nonstiff problems will be analyzed in 
Section 12. 

9. DESIGN CRITERIA FOR ONE-STEP METHODS 

Runge-Kutta and Rosenbrock methods evaluate the function several times in the 
course of a step of length h from Xn to Xn + h, say at x ,  + A i h ,  i = 1, 2 . . . . .  The 
author and his colleague H. A. Watts have pointed out in connection with explicit 
Runge-Kutta methods that  it is desirable that the evaluations span the interval 
[x , ,  Xn+~ ]. This is so that discontinuities can be "seen" by the formula. 

It is typical of stiff problems that they exhibit small regions in which the 
solution changes so fast that  it is almost discontinuous on a time scale suitable 
for the rest of the problem. We shall describe these boundary layers or transition 
regions here as quasi-discontinuities. Relaxation oscillations are a familiar ex- 
ample. Another kind of example comes from a forcing function. Hindmarsh and 
Byrne have considered a couple of mock-ups of photocatalyzed atmospheric 
reactions (see, e.g., [5]) which are illustrative. The simpler has the form 

y ' ( t )  = d - by + a E  (t). 

The forcing function E (t) is zero during the 12-hour night. At sunrise it increases 
in seconds to a value almost constant during the day and reverts to 0 at sunset. 
The problem is so stiff that  the solution is nearly always in steady state, in 
particular it has the constant value d / b  at night. Thus the forcing function E ( t )  
and the solution y ( t )  are nearly square waves. 
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With the more familiar methods we expect a code to locate a quasi-discontinuity 
very sharply. During a period of slow variation a code for stiff problems will take 
very large time steps. On such a time scale a boundary layer "looks" like a 
discontinuity. We expect, and find in the widely used codes, that  codes will have 
repeated step failures at such a quasi-discontinuity until the step size is reduced 
to the point that  the solution is not changing rapidly on the new time scale. Of 
course this means that the boundary layer is located accurately and resolved to 
the degree necessary. 

Quasi-discontinuities cannot be regarded as pathological for stiff problems and 
it is clear that  serious errors in their solution are possible with any formula which 
does not evaluate at t,,÷l. Specifically, if during a smooth portion of an integration 
a method might use a step size of h, a quasi-discontinuity could be located 
improperly by as much as (1 - Af lh ,  where t ,  + A~h is the point closest to tn+l at 
which the evaluation takes place. 

Among the fully implicit Runge-Kutta methods, considerable attention has 
been directed at those based on the Gaussian points because they achieve 
maximal order and A-stability. They are all defective in the way we have pointed 
out, with the midpoint rule being the worst case. Hulme and Daniel [12] have a 
code implementing both Gaussian and Radau formulas with doubling as an error 
estimator. Our observation applies directly. It is interesting to note that  in the 
recent derivation of some formulas by Butcher [4] (and implemented by Burrage, 
Butcher, and Chipman) the defect is not considered and it is quite possible. 
However, the additional constraints applied to achieve better stability properties 
had the side effect of avoiding the defect. 

Lindberg [28, pp. 201-215] has based an extrapolation code on a modified 
midpoint rule 

h f (  h y.+l + y ~ )  Yn+~ = y .  + tn + -~, 2 " 

It is interesting that  there has been some discussion [10, p. 165] as to whether the 
basic formula ought to be this rule or the trapezoidal rule 

h 
yn+, = y ,  + ~ [f(tn, y~) + f(a+l ,  yn+l)]. 

The argument advanced in favor of the midpoint rule is that  it is unnecessary to 
evaluate f(t ,+l,  yn+l). In the present context we see that  this is an argument 
against  the midpoint rule. 

The midpoint rule is an example of a semi-implicit formula. Some computa- 
tionally interesting examples of such formulas considered by Crouzeix, Alexander 
[1], and Norsett exhibit one or more defects arising from an attempt to achieve 
various other computationally desirable properties. Crouzeix's (2, 3) A-stable 
DIRK formula does not evaluate at tn+l. The (3, 4) formula evaluates in the 
future, as does Norsett's formula. 

The defect we have noted is practically standard with Rosenbrock formulas; 
see, for example, the formulas used in the codes of Bui [3], of Villadsen and 
Michelsen [27], and of Kaps and Rentrop [13]. 

In the course of these studies we noted that  a number of codes are based on 
one-step methods which evaluate outside the step, either in the past, some A, < 
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0, or in the future, some A, > 1. This has traditionally been avoided without any 
special comment, but in view of the recent use of such formulas, a few remarks 
seem to be in order. If a problem arises in autonomous form, there is no obstacle 
to evaluating outside the step. As we have commented earlier, most theoretical 
work is done with the autonomous form and it is easy to understand how a 
researcher might overlook an evaluation outside the interval. Several of Bui's 
Rosenbrock formulas evaluate in the past. This is not greatly different from a 
method with memory. There is an obvious difficulty with starting and after 
{effectively) restarting due to discontinuities. Bui's code apparently assumes that  
evaluation in the past will cause no problem, but this is not always true. Alexander 
[1] notes that  a semi-implicit formula of Crouzeix evaluates in the future. 
Norsett's pair as implemented by Houbak and Thomsen [11] does this too. There 
is not then a starting problem, but there is a termination problem. It is not 
uncommon that it is not possible to evaluate the function past some point, or its 
definition changes there. The DEPAC [23] software design specifically provides 
users a way to warn the code that this is the case. Any formula which evaluates 
in the future needs to take special action in such a case. 

We have not thought of any easy and reliable remedy for the defect of not 
evaluating at the end of the step when solving stiff problems. Perhaps we should 
remark that  it is the combination of formula and error estimator that  counts. If 
the formula did not evaluate at the end, but the estimator did, there would be no 
difficulty. We take a serious view of this defect. Evaluating outside the step is not 
so serious. For many problems no special action is needed. Easy remedies seem 
feasible because the difficulty is similar to a familiar one, but this does get away 
from the {relative} simplicity of one-step methods. We feel that  as an absolute 
minimum of protection to the user, the prologue of any code based on such a 
formula should warn the user of the situation so that  he can recognize when the 
code is not applicable. 

10. ADJUSTMENT OF STEP SIZE 

The principles of the adjustment of step size for explicit Runge-Kutta methods 
are discussed at length in [21, 22]. We have followed them in the portion of 
DEGRK concerned with the F{4, 5) formulas. However, if a step size should fail 
more than once, we reduce the step size by the fixed factor of 0.2. This is because 
the asymptotic behavior expected is not evident, else we would not have multiple 
failures. With no other information we resort to the fastest reduction ordinarily 
allowed. 

There are some new issues when solving stiff problems that  we have not seen 
discussed. One is losing the scale of the problem. For some particularly difficult 
problems, the Rosenbrock formulas we have implemented have needed to restart 
repeatedly. The code would be integrating a smooth solution with a very large 
step size and suddenly find it necessary to reduce the step size to the point that 
the problem is nonstiff. It would then move back to the smooth solution, at which 
time it would begin to increase the step size rapidly. We observed several cases 
when the algorithm for step size adjustment appropriate to the F(4, 5) formulas 
required more than 25 reductions of step size to finally obtain a successful step. 

The problem with the results mentioned is a general one. When solving stiff 
problems the observed order may not be that of the formula applied to nonstiff 
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problems. Pro thero  and Robinson [17] have taken  up this matter .  Ueberhuber  
[25] has t r ied to cope with it in another  context. I t  is easy to see tha t  there  is a 
difficulty by  considering a one-step me thod  applied to the specific scalar equat ion 

y '=Ay.  

If  a t  xn we have a computed  solution yn, the typical one-step me thod  leads to 

3',+1 = R(hA)yn, 

where R is a rat ional  function. T h e  local error  

le = y(x,  + h)  - y,+l = (exp(hA) - R(hA))y,. 

When [hA I << 1, we have 

l i e [  = (p('hA]v+l) yn 

for a me thod  of order  p. However,  when solving stiff systems we are interested in 
this differential equat ion for Re(A) < 0, [ hA [ >> 1 and the situation is radically 
different. First  we note  tha t  

l e _ R ( h A ) = _ C o +  cl c2 + . . .  
- y n  h-~ + {--h--~ " 

T he  Rosenbrock  methods  we implemented  all have  Co "- 0.3. One of the problems 
we integrated had [ hA [ ~ 101°, SO it is not  surprising tha t  the local error  did not  
behave  like a th i rd-order  formula. I t  is surprising to many  tha t  the local error  
may  well be a decreasing function of h for [ hA [ >> 1. To  get the kind of behavior  
we expect,  it m a y  be necessary to reduce hA enormously.  

We have responded to the si tuation in two ways. On a failed step we are 
pessimistic about  the assumed asymptot ic  behavior.  Because of the work in- 
volved, it is be t te r  to a t t empt  a step size too small and succeed than  one too large 
and fail. On a first failure, we simply halve the step size. Should this fail, we 
reduce the step size a t t empted  by a factor of 0.2. Should this step size fail, we, in 
effect, res tar t  by reducing the step size so tha t  [[ hfy [[ -- p, thus  forcing the code to 
change to the explicit Runge-Kut ta  formula. This  drastic action is because we 
have accumulated evidence tha t  the scale of the problem has been lost. For  
reliability we reduce the  step size to the point  where any integral curve can be 
resolved. 

On a successful step we est imate an appropriate  step size for continuing, but  
limit it depending on how stiff the problem is. Th e  explicit formula for nonstiff  
regions permits  a step size increase as large as a factor  of 5. T h e  larger [[ hf~ [[ is, 
the  more  conservative we choose to be because we are working in a region where 
our  theoret ical  underpinnings are shaky. Specifically in D E G R K ,  we limited the 
increase of step size to 

3.8 
1.2 + 

1.0 + II hf~ I____Jl" 
50 

Thus  if the  problem is barely stiff, the  increase is l imited to a factor  of 5, and if 
it is ex t remely  stiff, to a factor  of 1.2. 

ACM Transact ]ons  on Mathematmal  Software, Vol 8, No 2, June  1982 



ImplementatIon of Rosenbrock Methods • 109 

11. STABILITY PROPERTIES 

The stability of methods for the solution of stiff problems has been the subject of 
intensive research. Nevertheless, our understanding of the matter is far from 
answering the needs of practice. Early work rigorously applies only to problems 
of the form y'  -- Jy with a constant J which can be diagonalized by a similarity 
transformation. The common numerical methods can be analyzed by the same 
transformation so that  one can test stability by considering the method as applied 
to y '  = ~y for ~ a (complex) eigenvalue of J. Rosenbrock methods applied to this 
test equation lead to a rational function R (h)~) of the step size h and h. If ] R (h)~) ] 
_< 1, the computation is stable and otherwise, unstable. The application of this 
analysis to more complicated problems is heuristic. Although experience shows 
it to be useful, one should not put too much faith in it. 

The reason we give this background is that  the Kaps-Rentrop formula pairs 
have [ R (~) ] - 1 for the formula they intended for advancing the solution. When 
solving stiff problems we are very interested in step sizes h such that  for some 
eigenvalue )~ of the Jacobian, ] h)~ ] >> 1. The author much prefers to use formulas 
for which the stability is not so marginal, so as to be a little more confident that 
they will be applicable to problems less artificial than the test equation. 

Besides the matter of stability, there is the related matter of how accurate 
formulas are for I hA I >> 1. At least for the test equation, this can be studied in 
detail in terms of how well R(hh) approximates exp(h~). If [ R(oo) I - 1, there is 
no qualitative agreement for I hA [ >> 1. If I R (oo) I is significantly less than 1, the 
numerical solution is at least damped. 

We preferred to advance the solution with the third-order formula of the 
GRK4A pair because it has [ R (oo) [ - 0.31. We actually tried advancing with each 
formula of the pair. Kaps has told us that  in the tests of [13] it was more efficient 
to use the fourth-order formula. This is easy to understand because the test set 
[8] is not particularly demanding and rewards high order. Our experience was 
somewhat different because our code used the Fehlberg scheme part of the time. 
Whenever the Fehlberg scheme could be used, one would expect that  the higher 
order formula of the Rosenbrock pair would be advantageous. In our computa- 
tions with the test set [8] there was no important distinction due to which formula 
of the Rosenbrock pair was used. The matter was different when harder problems 
were tried. 

A good example of our experiences, though not the most dramatic, is the 
problem of Bui [2] integrated to x = 5. We made runs in which the solution was 
advanced with the third-order formula and corresponding runs with the fourth- 
order formula of the GRK4A pair. The results are displayed in Table III. With 
pure absolute error tolerances there was no striking difference. The number of 
steps gives a fair impression of the relative work. Although not negligible, the 
difference does not compare to that observed when pure relative error tolerances 
were used. Considering the cost of a step, this represents an important difference 
in the  performance of the formulas and caused us to prefer the more damped 
formula. 

We would prefer that  both formulas of the (3, 4) pair be strongly damped at 
infinity. Also, we would prefer to advance the solution with the fourth-order 
formula to take advantage of the higher order. This is partly why we made a 
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Tab le  Ill .  T h e  N u m b e r  of S teps  Requ i red  to 
Solve Bra ' s  P rob lem wi th  the  G R K 4 A  Pai r  W h e n  
the  In tegra t ion  Is Advanced  wi th  t he  Fo rmula  of  

Order  3 and  of  Order  4 

Order  3 Order  4 

Absolu te  10 -2 24 28 
error  10 -~ 90 114 

Rela t ive  10 -2 158 253 
error  10 -4 769 922 

different selection of formula pair in Section 5 than did Kaps and Rentrop. With 
our choice both formulas are A-stable and both have [ R (oo) I - 0.33. This is very 
nearly the same damping at infinity as that  of the third-order formula of GRK4A, 
but now we can advance the solution with the higher order formula (which by 
construction is a relatively accurate formula of order 4). 

12. MORE NUMERICAL RESULTS 

As we said in the Introduction, it is not our object to compare the performance 
of the code DEGRK to popular BDF codes. Some results were reported in 
Sections 8 and 11. We shall present here a few additional results intended to say 
something about the algorithms used in DEGRK and to suggest that  Rosenbrock 
methods might be competitive in suitable circumstances. 

In Section 2 we stated a problem from the chemical engineering literature 
which depends on three parameters K, ~, Nf. In the article referenced a set of 
computations is reported for the nine problems resulting from the choices K -- 5; 

= 0.1, 5, 500; Nf-- 0.1, 5, 50. The solutions are well scaled so an absolute error 
test is reasonable. We solved all nine problems at a given tolerance with DEGRK 
and then with the BDF code of the NAG library [16]. The results are displayed 
in Table IV. Spot checking of the apparent accuracies suggests that  DEGRK is 
producing a somewhat more accurate result, but that  the accuracies are roughly 
comparable. These results and others of the kind show that  DEGRK may be 
more efficient in a real time sense for suitable problems provided one does not 
ask for a great deal of accuracy. Kaps and Rentrop came to a similar conclusion 
in [13]. 

The parameter choice K = 5, $ ffi 0.1, Nf -- 0.1 results in the least stiff problem. 
At all three tolerances the F(4, 5) formulas are used at every step. At tolerance 
10 -2 there are only 3 steps, and 3 Jacobian evaluations were made. At tolerance 
10-4 the decision is less ambiguous because of the smaller step size needed to get 
the accuracy. There were then only 6 steps and 2 Jacobian evaluations. At 
tolerance 10 -8 there were 12 steps and 3 Jacobian evaluations. Because so few 
steps are made in solving this problem, the number of Jacobian evaluations is 
relatively large. As we would expect, the more stringent the tolerance, the less 
stiff the problem looks and the fewer Jacobians are needed in our test. It is no 
surprise that  DEGRK is more efficient than the BDF code in terms of function 
and Jacobian evaluations. At tolerance 10 -2 DEGRK required 21 function eval- 
uations along with the 3 Jacobian evaluations, whereas the BDF code needed 35 
function evaluations and 8 Jacobian evaluations. The difference of performance 
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Table  IV C P U  T i m e s  for Solut ion of a 
Chemical  Engineer ing  Prob lem for 9 Se t s  of  
Parameters :  Some  Sets  Resu l t  m a Nons t l f f  

Problem; Others  in a Stiff  P rob lem 

Tolerance  D E G R K  B D F  

10 -e 0.205 0.497 
10 -4 0.754 1.02 
10 -e 4 34 1.67 

Tab le  V. Solut ion by D E G R K  of t he  P rob lem of Tab le  IV wi th  
the  P a r a m e t e r  Se t  Resul t ing  in the  Stiffest  P rob lem 

Steps  wi th  
Tole rance  m a x  h7  [[ fy II F(4, 5) To ta l  s t eps  

10 -z 7353 2 21 
10 -4 4478 12 77 
10 -6 1734 36 636 

in this measure increases rapidly as the tolerance becomes more stringent for a 
nonstiff problem. 

The parameter choice K = 5, $ = 500, N / =  50 results in the stiffest problem. 
Results are displayed in Table V. According to the results of Section 4, the values 
of hy I[ fy [[ imply some fairly ill-conditioned systems in the evaluation of the 
Rosenbrock formula. As is typical, more stringent accuracy requests lead to 
smaller step sizes and better conditioned systems. Thus, in a way, we can expect 
more accurate solutions when we really need them. A significant number of steps 
were taken with the explicit method at each tolerance. Notice the rapid increase 
in the number of steps as the tolerance is made more stringent. This is charac- 
teristic of a fixed-order method. 

It is especially hard to compare codes on difficult problems, but we shall 
present one example which has its interesting points. Scott and Watts [15, pp. 
197-227] report a difficult initial value problem arising from the solution by 
shooting methods of a boundary value problem describing a kidney function. The 
system of five equations shows a dramatic difference in cost when using the 
Adams suite ODE/STEP, INTRP on variation of one initial value from 0.99026 
to 0.99000. In large measure the difference in behavior is due to stiffness, although 
in another study we found that  both problems are stiff. The integrations are very 
sensitive so high accuracy was necessary in the application. Such high accuracy 
makes DEGRK inappropriate, but we thought it interesting to explore the 
problem at relatively crude tolerances because of the differing stiffness. 

For each of the two different initial values cited, we solved the problem at the 
two pure relative error tolerances 10-2, 10-4. DEGRK must take the first step of 
an integration with the explicit Runge-Kutta pair, but for these integrations the 
problems were so stiff that  it took no other steps with the explicit formula. The 
problem with initial value 0.99000 is significantly stiffer. We computed in every 
case the maximum value of hy ][ fy ][ as an indication of the stiffness. For the initial 
value 0.99000 this maximum ranged from 4000 to 7000. For the initial value 
0.99026, it ranged from 20 to 50. 
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We also solved the problems with the BDF code from the NAG library. A 
difficulty is that the computed results are of differing accuracies. We computed 
solutions at the pure relative error tolerance of 10 -6 with the BDF code and 
regarded them as the "true" solutions in what follows. In the application it is the 
value of the solution at the end of the integration which is critical, so we 
concentrated on it. 

For the problem with initial value 0.99000, the BDF code computed a solution 
cheaply at tolerance 10 -2 , 0.049 units of central processor time, but it was 
worthless. For example it reported the first two solution components to be about 
1.89 × 10 °, 5.81 × 10 -1, when they, in fact, are about 1.38 × 102 and 7.21 × 10 -3. 
At the tolerance 10 -4 the cost was 0.295 units and the maximum relative error 
was about 1.3 × 10 -1. When DEGRK was given the tolerance 10 -2 it took more 
time, 0.180 units, but it produced a result almost as good as that with tolerance 
10 -4 in the BDF code, namely, a maximum error of 1.7 x 10 -1. When DEGRK 
was given the tolerance 10-4 it took less time, 0.248 units, than the BDF code and 
got a lot more accuracy, namely, a maximum error of 2.0 × 10 -3. The situation 
was similar, though rather less dramatic, for the initial condition 0.99026. 

The kind of results seen on this problem did not surpise the author because he 
adopted rather conservative tactics in DEGRK and furthermore some of the 
algorithms have a tendency to result in more accuracy than required. The line of 
BDF codes starting with DIFSUB [9] are not so conservative. The situation 
makes it hard to compare DEGRK directly to BDF codes, but this is not the 
object of the present paper. We do think the results presented show that 
Rosenbrock codes are competitive with BDF codes in appropriate circumstances 
and that DEGRK, in particular, is in some respects successful. 
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